
Resonate

Smart Contract Security Assessment

August 18, 2022

Prepared for:

Rob Montgomery

Revest Finance

Prepared by:

Ayaz Mammadov and Oliver Murray

Zellic Inc.

Contents

About Zellic 2

1 Executive Summary 3

2 Introduction 5

2.1 About Resonate . 5

2.2 Methodology . 5

2.3 Scope . 7

2.4 Project Overview . 8

2.5 Project Timeline . 8

3 Detailed Findings 9

3.1 Inconsistent interest calculations in Resonate 9

3.2 Incomplete whitelist and blacklist functionality in ResonateHelper . . . 11

3.3 Missing claim event in batchClaimInterest 13

4 Discussion 14

4.1 Oracle attacks . 14

4.2 Reentrancy . 14

4.3 Code maturity . 15

4.4 Composability . 16

5 Audit Results 17

5.1 Disclaimers . 17

Zellic 1 Revest Finance

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please email us at
hello@zellic.io or contact us on Telegram at https://t.me/zellic_io.

Zellic 2 Revest Finance

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io
https://t.me/zellic_io

1 Executive Summary

Zellic conducted a second audit for Revest Finance from July 25th to July 27th, 2022.

This second audit covered the same code base as the audit performed from July 18th
to July 22nd, 2022. This second audit included new contracts and some changes to
contracts reviewed in the previous audit.

All findings presented here reflect only the new code. Please refer to the previous
report for findings that still exist in this code base but that were present at the time of
last review. All discussion points that still broadly apply remain.

Our general overview of the code is unchanged. It appears mechanically optimized
and gas efficient, using queues to match issuers and purchasers.

We applaud Revest Finance for the documentation and the articles that detail in depth
the inner workings of the Resonate project, explaining not only the mechanism but
also the economic incentives of the market participants.

Zellic thoroughly reviewed the Resonate codebase to find protocol-breaking bugs and
to find any technical issues outlined in theMethodology section (2.2) of this document.

Zellic met with the Revest Finance team to discuss their threat model. In our review
we paid special attention to its pass through governance and reentrancy, oracle, and
centralization risks.

Due to the complexity of the protocol, we worked through many possible exchanges
between issuers and purchasers across different pool configurations.

During our assessment on the scoped Resonate contracts, we discovered three find-
ings. Two of which were of low severity, the remaining was informational in nature.

Additionally, Zellic recorded its notes and observations from the audit for Revest Fi-
nance’s benefit in the Discussion section (4) at the end of the document. Notes that
still apply to the code based from the previous audit have been left as is for local
completeness.

Zellic 3 Revest Finance

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 0

Medium 0

Low 2

Informational 1

Low

Informational

Zellic 4 Revest Finance

2 Introduction

2.1 About Resonate

From the creators of the Revest Protocol, Revest Finance is proud to introduce Res-
onate. Resonate intends to solve one of the biggest problems in DeFi by creating
a marketplace for swapping up-front interest payments for future yields. Resonate
uses pools to group traders by product attributes (locking terms, asset type, etc.) and
clears orders using an automated queue-based matching system. The protocol is
built on top of Revest and uses much of the existing infrastructure, including lockable
FNFTs.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security audit-
ing including both automated testing and manual review. These processes can vary
significantly per engagement, but themajority of the time is spent on a thoroughman-
ual review of the entire scope.

Alongside a variety of open-source tools and analyzers used on an as-needed basis,
Zellic focuses primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. We analyze the scoped smart contract code using automated tools to
quickly sieve out and catch these shallow bugs. Depending on the engagement, we
may also employ sophisticated analyzers such as model checkers, theorem provers,
fuzzers, and so forth as necessary. We also perform a cursory review of the code to
familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We manually review the contract logic to ensure that the code implements the ex-
pected functionality as specified in the platform’s design documents. We also thor-
oughly examine the specifications and designs themselves for inconsistencies, flaws,
and vulnerabilities. This involves use cases that open the opportunity for abuse, such
as flawed tokenomics or share pricing, arbitrage opportunities, and so forth.

Complex integration risks. Several high-profile exploits have not been the result of
any bug within the contract itself; rather, they are an unintended consequence of the
contract’s interaction with the broader DeFi ecosystem. We perform a meticulous
review of all of the contract’s possible external interactions and summarize the asso-

Zellic 5 Revest Finance

ciated risks: for example, flash loan attacks, oracle pricemanipulation, MEV/sandwich
attacks, and so forth.

Codematurity. We review for possible improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality stan-
dards. We also provide suggestions for possible optimizations, such as gas optimiza-
tion, upgradeability weaknesses, centralization risks, and so forth.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact; we assign it on
a case-by-case basis based on our professional judgment and experience. As one
would expect, both the severity and likelihood of an issue affect its impact; for in-
stance, a highly severe issue’s impact may be attenuated by a very low likelihood. We
assign the following impact ratings (ordered by importance): Critical, High, Medium,
Low, and Informational.

Similarly, Zellic organizes its reports such that the most important findings come first
in the document rather than being ordered on impact alone. Thus, wemay sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on numerous soft factors, such as our clients’ threat
models, their business needs, their project timelines, and so forth. We aim to provide
useful and actionable advice to our partners that consider their long-term goals rather
than simply provide a list of security issues at present.

Zellic 6 Revest Finance

2.3 Scope

The engagement involved a review of the following targets:

Resonate Contracts

Repository https://github.com/Revest-Finance/Resonate

Previous report versions 6c3989dc8f5e2e7a0a60ad7792265ed246083219

Current versions 4633085640f777ca0eeb894189d331f1c4c70a92

Programs • AaveV2ERC4626
• AaveV2ERC4626Factory
• ERC4626Factory
• YearnWrapper_usdt
• YearnWrapper
• PoolSmartWallet
• Resonate
• ResonateHelper
• ResonateSmartWallet
• AddressLockProxy
• OutputReceiverProxy
• MasterChefAdapter
• MasterChefV2Adapter

Type Solidity

Platform EVM-compatible

Zellic 7 Revest Finance

https://github.com/Revest-Finance/Resonate

2.4 Project Overview

Zellic was contracted to perform a security assessment with two consultants for a
total of one person-week. The assessment was conducted over the course of one
calendar week.

Contact Information

The following project managers were associated with the engagement:

Jasraj Bedi, Co-founder
jazzy@zellic.io

Stephen Tong, Co-founder
stephen@zellic.io

The following consultants were engaged to conduct the assessment:

Ayaz Mammadov, Engineer
ayaz@zellic.io

Oliver Murray, Engineer
oliver@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

July 25, 2022 Start of primary review period

July 27, 2022 End of primary review period

Zellic 8 Revest Finance

mailto:jazzy@zellic.io
mailto:stephen@zellic.io
mailto:ayaz@zellic.io
mailto:oliver@zellic.io

3 Detailed Findings

3.1 Inconsistent interest calculations in Resonate

• Target: Resonate

• Category: Business Logic
• Likelihood: Low

• Severity: Low
• Impact: Low

Description

In order to convert from the amount of underlying assets to shares, claimInterest
uses previewWithdraw(...))):

function previewWithdraw(uint256 assets)
public
view
override
returns (uint256)

{
return convertToShares(assets);

}
[...))]
function convertToShares(uint256 assets)

public
view
override
returns (uint256)

{
return (assets * yVault.totalSupply()) / getFreeFunds();

}

However, batchClaimInterest uses the following to convert from assets to shares:

uint shareNormalization = vault.totalSupply() * PRECISION / vault.
totalAssets();

[...))]
uint totalSharesUnderlying = shareNormalization * amountUnderlying /

PRECISION;

Zellic 9 Revest Finance

When interacting with the yearn vault, this results in a difference in interest calcu-
lations between the two functions - claimInterest(...))) uses getFreeFunds() in the
divisor while batchClaimInterest uses vault.totalAssets();.

Impact

The interest calculation of batchClaimInterest would be inflated over claimInterest
by the difference in denominator in the asset-to-share conversion.

Recommendations

The difference is probably not intended by developers. It would be better to leverage
composability and to use previewWithdraw(...))) in batchClaimInterest. This would
ensure batchClaimInterest is consistentwith claimInterest across the different adapter
implementations.

Remediation

Revest has followed the recommendation and is using previewWithdraw(...))) in com-
mit da89259c00235fdab7edbcb638ec04f3e360ef48.

Zellic 10 Revest Finance

3.2 Incompletewhitelist andblacklist functionality in Resonate-
Helper

• Target: ResonateHelper

• Category: Business Logic
• Likelihood: Low

• Severity: Low
• Impact: Low

Description

Once a fxSelector has been added to the whitelist, it cannot later be blacklisted.

For example, if the function has not been blacklisted it can be set in the whitelist:

function whiteListFunction(uint32 selector) external onlySandwichBot
glassUnbroken {
require(!blackListedFunctionSignatures[selector], “ER030”);
whiteListedFunctionSignatures[selector] = true;

}

And if the function has been whitelisted, it can still be blacklisted:

function blackListFunction(uint32 selector) external onlySandwichBot
glassUnbroken {
blackListedFunctionSignatures[selector] = true;

}

However, if a function has been whitelisted and is then blacklisted, it will still pass the
validation check in proxyCall(…) because function logic only requires the fxSelector
to exist in the whitelist:

function proxyCall(bytes32 poolId, address vault, address[] memory
targets, uint[] memory values, bytes[] memory
calldatas) external onlySandwichBot glassUnbroken {
for (uint256 i = 0; i < targets.length; i++) {

require(calldatas[i].length >) 4, “ER028”); /)Prevent calling
fallback function for re-entry attack

bytes memory selector = BytesLib.slice(calldatas[i], 0, 4);
uint32 fxSelector = BytesLib.toUint32(selector, 0);
require(whiteListedFunctionSignatures[fxSelector], “ER025”);

}

Zellic 11 Revest Finance

ISmartWallet(_getWalletForFNFT(poolId)).proxyCall(vault, targets,
values, calldatas);

}

Impact

If the sandwichbot were to mistakenly set a dangerous function (or a function that
later turned out to be dangerous) to the whitelist they would not be able to later block
that function from being passed to proxyCall(...))).

Recommendations

Include logic to blacklist previously whitelisted functions. The blacklist should be im-
mediately set to include increaseAllowance and approve as these functions can be
used to increase spending allowance, which can trigger transactions that would pass
the balance checks on proxyCall(...))) in ResonateSmartWallet.

Remediation

Revest has added in the functionality that would allow for blacklisting of previously
whitelisted functions in commit f95f9d5ac4ac31057cef185d57a1a7b03df5f199. The func-
tions increaseAllowance and approve have been added to the blacklist in commit f24
28392e0ce022cd6fde9cf41e654879c03119c.

Zellic 12 Revest Finance

3.3 Missing claim event in batchClaimInterest

• Target: Resonate

• Category: Business Logic
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

There is no event emitted indicating interest has been claimed during a call to batchC
laimInterest.

Impact

Providing information on interest claimed in batches would be useful to downstream
listeners.

Recommendations

Include an event announcing interest claimed during batch calls, ideally at the pool
level.

Remediation

Revest has followed the recommendation and added the event in commit 282616250
47b025bf1baa17fcbb4c8b114878590.

Zellic 13 Revest Finance

4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

4.1 Oracle attacks

If an attacker got control of the price oracle, they could pass a low price to sharesPer
Packet during a call to submitProducer(…):

sharesPerPacket = IOracleDispatch(oracleDispatch[vaultAsset][pool.asset])
.getValueOfAsset(vaultAsset, pool.asset, true);

The depressed price would drive up the number of packets of vault shares for interest
claiming.

…

producerPacket = getAmountPaymentAsset(pool.rate * pool.packetSize/
PRECISION, sharesPerPacket, vaultAsset, vaultAsset);…

producerOrder = Order(uint112(amount/ producerPacket), sharesPerPacket,
msg.sender.fillLast12Bytes());

They would get matched with a higher amount of underlying vault principal for the
same dollar amount of pool asset deposited, allowing them to earn excessive inter-
est. Similar to the points in the section on centralization risk, this attack vector is best
managed by 1) using a multisig to set the price oracle address and 2) using a reliable
price oracle such as ChainLink.

4.2 Reentrancy

The functions batchClaimInterest(...))) in Resonate and redeem(...))) in ResonateS-
martWallet have been added since the last review and do not include the nonReent
rant modifiers. While these functions do not appear to be reentrancy concerns, we
advise Revest similarly apply the nonReentrantmodifiers to these functions.

The nonReentrantmodifier has been added to redeem(...))) in commit 47d6c1393264ea

Zellic 14 Revest Finance

71cad1fa8a7ae8e24869c5ae37 and to batchClaimInterest(...))) in commit da89259c002
35fdab7edbcb638ec04f3e360ef48.

4.3 Code maturity

Follow the adopted conventions for internal and private variables

Best practices for solidity development use the _ to prefix both internal and private
variables and functions.

Thiswas addressed by Revest in commit b81a509b41524c896f8bfa75785b554496e16080.

Reliance on integer underflow reversion

In numerous places reversion by integer underflow is used as an implicit check that
withdraw amounts do not exceed available funds. For example, this happens in rece
iveResonateOutput(...))) as there is no check made on the function parameter quanti
ty. It also happens in modifyExistingOrder as there is no check on amount. Including
explicit checks on these parameters would send clear messages to protocol users
under transaction failure and improve the overall user experience.

Revest indicated they may address this in the future.

Confusing variable names

In general the variables are intuitively named. However, the method getAddressForFN
FT(bytes32 fnftId) in ResonateHelper takes an fnftId parameter but is in fact passed
a poolId. This can create some developer confusion because the variable name fnft
Id is also used in Resonate to denote the ID of the FNFT. We suggest Revest change
the parameter name from fnftId to poolId.

Revest indicated this has been addressed.

Clear comments

At the time of audit the Resonate project is still a work in progress. There are many
comments left for other developers that take the form of questions and to-do lists.
There is also a general lack of good-quality comments that would be useful for some-
one not intimately familiar with the code base. This applies to both the core contracts
and their interfaces. For example, the following comment indicates awork in progress
but also points to an unused variable:

Zellic 15 Revest Finance

function maxDeposit(address _account)
public
view
override
returns (uint256)

{
_account; /) TODO can acc custom logic per depositor
VaultAPI _bestVault = yVault;
uint256 _totalAssets = _bestVault.totalAssets();
uint256 _depositLimit = _bestVault.depositLimit();
if (_totalAssets >= _depositLimit) return 0;
return _depositLimit - _totalAssets;

}

Revest has made considerable improvements to the inline documentation.

Unused resources

There are potentially unused resources in the project; for example, FullMath is never
used for uint256 in Resonate.

Revest has removed the unused library - 6b1b81f6c0310297f5b6cd9a258b99e43c61b092.

Control variables and abstraction

Using values of process variables like depositedShares to indicate pool and order con-
figurations is challenging to read. And furthermore, as we have seen in these report
findings, it is error prone. Revest should consider adding another layer of abstraction
to more clearly illustrate pool and order configurations.

4.4 Composability

The Resonate protocol relies heavily on composability. It is therefore important to
note that the improper functioning of any of the composable contracts lying outside
of the scope of this audit is likely to cause considerable failure in Resonate. These
contracts include the yield generating protocols, the oracle price sources, Revest, the
Revest registry, and the Revest FNFT handler.

It is important to note that similar suggestions and observations presented in the pre-
vious report’s centralization risk finding also apply to these dependencies as well.

Zellic 16 Revest Finance

5 Audit Results

At the time of our audit, the code was not deployed to mainnet evm.

During our audit, we discovered three findings. Two of whichwere low, the remaining
was informational.

5.1 Disclaimers

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic, of course, also cannot make guarantees about any
additional code added to the assessed project after the audit version of our assess-
ment. Furthermore, because a single assessment can never be considered compre-
hensive, we always recommendmultiple independent assessments pairedwith a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code in these recom-
mendations are intended to convey how an issue may be resolved (i.e., the idea), but
they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 17 Revest Finance

	About Zellic
	Executive Summary
	Introduction
	About Resonate
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Inconsistent interest calculations in Resonate
	Incomplete whitelist and blacklist functionality in ResonateHelper
	Missing claim event in batchClaimInterest

	Discussion
	Oracle attacks
	Reentrancy
	Code maturity
	Composability

	Audit Results
	Disclaimers

