
Resonate

Smart Contract Security Assessment

August 5, 2022

Prepared for:

Rob Montgomery

Revest Finance

Prepared by:

Ayaz Mammadov and Oliver Murray

Zellic Inc.

Contents

About Zellic 3

1 Executive Summary 4

2 Introduction 5

2.1 About Resonate . 5

2.2 Methodology . 5

2.3 Scope . 7

2.4 Project Overview . 8

2.5 Project Timeline . 8

3 Detailed Findings 9

3.1 Missing validation check in createPool can result in loss of user funds . 9

3.2 Failure to cancel orders in modifyExistingOrder 11

3.3 Failed approval check in calculateAndClaimInterest 14

3.4 Missing validation check in proxyCall filter can allow dangerous calls . 15

3.5 Centralization risk . 16

3.6 Missing correct event information . 18

4 Discussion 19

4.1 Oracle attacks . 19

4.2 Reentrancy . 19

4.3 Code maturity . 20

4.4 Composability . 21

5 Audit Results 23

Zellic 1 Revest Finance

5.1 Disclaimers . 23

Zellic 2 Revest Finance

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please email us at
hello@zellic.io or contact us on Telegram at https://t.me/zellic_io.

Zellic 3 Revest Finance

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io
https://t.me/zellic_io

1 Executive Summary

Zellic conducted an audit for Revest Finance from July 18th to July 22nd, 2022.

Our general overview of the code is that it appears mechanically optimized and gas
efficient, using queues to match issuers and purchasers.

We applaud Revest Finance for the documentation and the articles that detail in depth
the inner workings of the Resonate project, explaining not only the mechanism but
also the economic incentives of the market participants.

Zellic thoroughly reviewed the Resonate codebase to find protocol-breaking bugs and
to find any technical issues outlined in theMethodology section (2.2) of this document.

Zellic met with the Revest Finance team to discuss their threat model. In our review
we paid special attention to its pass through governance and reentrancy, oracle, and
centralization risks.

Due to the complexity of the protocol, we worked through many possible exchanges
between issuers and purchasers across different pool configurations.

During our assessment on the scoped Resonate contracts, we discovered six findings.
One of which was critical and has since been addressed by Revest. Of the remaining
five findings, one was medium severity, two were of low severity, and the remaining
were informational in nature.

Additionally, Zellic recorded its notes and observations from the audit for Revest Fi-
nance’s benefit in the Discussion section (4) at the end of the document.

Breakdown of Finding Impacts

Impact Level Count

Critical 1

High 0

Medium 1

Low 2

Informational 2

Critical
Medium

Low

Informational

Zellic 4 Revest Finance

2 Introduction

2.1 About Resonate

From the creators of the Revest Protocol, Revest Finance is proud to introduce Res-
onate. Resonate intends to solve one of the biggest problems in DeFi by creating
a marketplace for swapping up-front interest payments for future yields. Resonate
uses pools to group traders by product attributes (locking terms, asset type, etc.) and
clears orders using an automated queue-based matching system. The protocol is
built on top of Revest and uses much of the existing infrastructure, including lockable
FNFTs.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security audit-
ing including both automated testing and manual review. These processes can vary
significantly per engagement, but themajority of the time is spent on a thoroughman-
ual review of the entire scope.

Alongside a variety of open-source tools and analyzers used on an as-needed basis,
Zellic focuses primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. We analyze the scoped smart contract code using automated tools to
quickly sieve out and catch these shallow bugs. Depending on the engagement, we
may also employ sophisticated analyzers such as model checkers, theorem provers,
fuzzers, and so forth as necessary. We also perform a cursory review of the code to
familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We manually review the contract logic to ensure that the code implements the ex-
pected functionality as specified in the platform’s design documents. We also thor-
oughly examine the specifications and designs themselves for inconsistencies, flaws,
and vulnerabilities. This involves use cases that open the opportunity for abuse, such
as flawed tokenomics or share pricing, arbitrage opportunities, and so forth.

Complex integration risks. Several high-profile exploits have not been the result of
any bug within the contract itself; rather, they are an unintended consequence of the
contract’s interaction with the broader DeFi ecosystem. We perform a meticulous
review of all of the contract’s possible external interactions and summarize the asso-

Zellic 5 Revest Finance

ciated risks: for example, flash loan attacks, oracle pricemanipulation, MEV/sandwich
attacks, and so forth.

Codematurity. We review for possible improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality stan-
dards. We also provide suggestions for possible optimizations, such as gas optimiza-
tion, upgradeability weaknesses, centralization risks, and so forth.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact; we assign it on
a case-by-case basis based on our professional judgment and experience. As one
would expect, both the severity and likelihood of an issue affect its impact; for in-
stance, a highly severe issue’s impact may be attenuated by a very low likelihood. We
assign the following impact ratings (ordered by importance): Critical, High, Medium,
Low, and Informational.

Similarly, Zellic organizes its reports such that the most important findings come first
in the document rather than being ordered on impact alone. Thus, wemay sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on numerous soft factors, such as our clients’ threat
models, their business needs, their project timelines, and so forth. We aim to provide
useful and actionable advice to our partners that consider their long-term goals rather
than simply provide a list of security issues at present.

Zellic 6 Revest Finance

2.3 Scope

The engagement involved a review of the following targets:

Resonate Contracts

Repository https://github.com/Revest-Finance/Resonate

Versions 6c3989dc8f5e2e7a0a60ad7792265ed246083219

Programs • AaveV2ERC4626
• AaveV2ERC4626Factory
• ERC4626Factory
• YearnWrapper_usdt
• YearnWrapper
• PoolSmartWallet
• Resonate
• ResonateHelper
• ResonateSmartWallet
• AddressLockProxy
• OutputReceiverProxy

Type Solidity

Platform EVM-compatible

Zellic 7 Revest Finance

https://github.com/Revest-Finance/Resonate

2.4 Project Overview

Zellic was contracted to perform a security assessment with two consultants for a
total of one person-week. The assessment was conducted over the course of one
calendar week.

Contact Information

The following project managers were associated with the engagement:

Jasraj Bedi, Co-founder
jazzy@zellic.io

Stephen Tong, Co-founder
stephen@zellic.io

The following consultants were engaged to conduct the assessment:

Ayaz Mammadov, Engineer
ayaz@zellic.io

Oliver Murray, Engineer
oliver@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

July 18, 2022 Start of primary review period

July 22, 2022 End of primary review period

Zellic 8 Revest Finance

mailto:jazzy@zellic.io
mailto:stephen@zellic.io
mailto:ayaz@zellic.io
mailto:oliver@zellic.io

3 Detailed Findings

3.1 Missing validation check in createPool can result in loss of
user funds

• Target: Resonate

• Category: Business Logic
• Likelihood: Medium

• Severity: Critical
• Impact: Critical

Description

The function createPool(...))) can be called on an already existing pool when add
itionalRate > 0 &) lockupPeriod =) 0. The check for a preexisting pool in initPoo
l only addresses the case of (lockupPeriod >) MIN_LOCKUP &) additionalRate =) 0)
by using the following check require(pools[poolId].lockupPeriod =) 0, 'ER002').

Impact

A malicious user could recreate an already existing pool. This would reset the Pool
Queue(...))), which tracks the positions in the queue of the consumer and producer
orders. These orders would effectively be taken out of the matching algorithm. If
the pool had only processed a limited number of orders, the previous orders could
easily be overwritten and no longer modified using modifyExistingOrder(...))). Once
overwritten, there would be no way to retrieve the funds from the PoolSmartWallet.

Recommendations

Expand the require checks in initPool(...))) to the following:

function initPool(
address asset,
address vault,
uint80 rate,
uint80 _additional_rate,
uint32 lockupPeriod,
uint packetSize

) private returns (bytes32 poolId) {
poolId = getPoolId(asset, vault, rate, _additional_rate,

lockupPeriod, packetSize);

Zellic 9 Revest Finance

require(pools[poolId].lockupPeriod =) 0 &) pools[poolId].
addInterestRate =) 0, 'ER002');

Remediation

This finding was remediated by Revest in commit f19896868dd2be5c745c66d9d75219f6
b04a593c.

Zellic 10 Revest Finance

3.2 Failure to cancel orders in modifyExistingOrder

• Target: Resonate
• Category: Business Logic
• Likelihood: Medium

• Severity: Medium
• Impact: Medium

Description

Producers are not able to cancel and recover funds on queued orders using modify
ExistingOrder(...))) for cross-asset pools. Calling submitProducer(...))) always sets
shouldFarm = false and order.depositedShares > 0 using the oracle price:

if(shouldFarm) {
IERC20(asset).safeTransferFrom(msg.sender, address(this), amount);
order.depositedShares = IERC4626(vaultAdapter).deposit(amount,
getAddressForPool(poolId)) / order.packetsRemaining;

} else {
IERC20(asset).safeTransferFrom(msg.sender, getAddressForPool(poolId),
amount);

}

However, modifyExistingOrder(...))) hasmissing checks and assumes the orderswere
deposited in the vault asset instead of the pool asset:

if (order.depositedShares > 0) {
getWalletForPool(poolId).withdrawFromVault(amountTokens, msg.sender,
vaultAdapters[pool.vault]);

} else {
getWalletForPool(poolId).withdraw(amountTokens, pool.asset, msg.
sender);

}

The attempt towithdraw from the vault asset from the poolwalletwill fail. Fortunately,
there are no vault assets in the pool wallet to exploit because all vault assets are sent
to the FNFT wallet (ResonateSmartWallet) when orders are matched. However, a
producer would not be able to retreive the funds of their order.

It should be noted that attempting to fix this bug by only directing modifyExistingO
rder(...))) to retreive the pool asset instead of the vault asset will result in a critical
exploit. This is because submitProducer(...))) accounts for the price of the vault asset
while modifyExisitngOrder(...))) does not.

Zellic 11 Revest Finance

For example, the producer deposits amount of pool assets and gets credited packets
equal to amount/ producerPacket:

...))
sharesPerPacket = IOracleDispatch(oracleDispatch[vaultAsset][pool.asset])

.getValueOfAsset(vaultAsset, pool.asset, true);
producerPacket = getAmountPaymentAsset(pool.rate * pool.packetSize/

PRECISION, sharesPerPacket, vaultAsset, vaultAsset);
...))
producerOrder = Order(uint112(amount/ producerPacket), sharesPerPacket,

msg.sender.fillLast12Bytes());

Through getAmountPaymentAsset(...))) the producerPacket scales linearlywith the vault
price. However, if the producer tries to later modify their order, there is no adjustment
from the number of packets to the amount of pool asset:

...))
if (isProvider) {

providerQueue[poolId][position].packetsRemaining -= amount;
} else {

consumerQueue[poolId][position].packetsRemaining -= amount;
}
...))
uint amountTokens = isProvider ? amount * pool.packetSize * pool.rate /

PRECISION : amount * pool.packetSize;

If vault price > 1 the producer will not be refunded a sufficient amount of assets
for the reduction in packets. This is because submitProducer(...))) scales down the
packets by the vault price, while modifyExistingOrder(...))) does not commensurately
scale up the amount of pool asset per packet.

If vault price < 1 the producer will be refunded an excessive amount of assets for
the reduction in packets. This is because submitProducer(...))) scales up the packets
by the vault price, while modifyExistingOrder(...))) does not commensurately scale
down the amount of pool asset per packet.

Impact

Order cancelling for producers would be nonoperational.

Zellic 12 Revest Finance

Recommendations

The following changes should be made to modifyExistingOrder(...))): (1) withdrawl
the pool asset for cross-asset producer orders and (2) use the price of the vault asset
at the time the order was submitted to correctly calculate amountTokens.

Remediation

This finding was remediated by Revest in commit fc3d96d91d7d8c5ef4a65a202cad18a3
e86a3d09.

Zellic 13 Revest Finance

3.3 Failed approval check in calculateAndClaimInterest

• Target: ResonateSmartWallet

• Category: Coding Mistakes
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

The allowance check for token transfer approval always fails in calculateAndClaimIn
terest(...))):

) public override onlyMaster returns (uint interest, uint sharesRedeemed)
{
IERC4626 vault = IERC4626(vaultAdapter);
if(IERC20(vaultToken).allowance(address(this), vaultAdapter) <
interest) {

IERC20(vaultToken).approve(vaultAdapter, type(uint).max);
}

The if statement will always fail because interest has not been initialized from zero.

Impact

Minimal - other functions in ResonateSmartWallet will be called that also set the token
transfer approval to max. In the worst case scenario, the very first producer order will
be delayed in claiming interest until the first consumer order reclaims their principal.

Recommendations

Change interest to totalShares in the if control statement.

Remediation

This finding was remediated by Revest in commit 6b1b81f6c0310297f5b6cd9a258b99e4
3c61b092.

Zellic 14 Revest Finance

3.4 Missing validation check in proxyCall filter can allow dan-
gerous calls

• Target: ResonateSmartWallet

• Category: Business Logic
• Likelihood: Low

• Severity: Low
• Impact: Low

Description

The proxyCall function has checks to ensure no calls made to it result in a decrease
of capital. However, it has incomplete checks to ensure there are no calls made that
could result in a future decrease of capital. For example, it currently includes a filter
for approve but none for newer functions like increaseAllowance.

Impact

The proxyCall function can only be called by the sandwich bot. In the case of a com-
promise or a security incident involving keys, the lack of the requisite checks could
result in a loss of funds.

Recommendations

We recommend adding a check for the increaseAllowance function selector. The
use of an adjustable white list or black list to control allowed functions would pro-
vide additional flexibility for unforseen risky functions. The management of the white
list/black list should be delegated to another administrative account to limit central-
ization risk.

Remediation

Revest has indicated thiswill be resolved at deployment-timebymodifying the deployment-
script to include the increaseAllowance function signature.

Zellic 15 Revest Finance

3.5 Centralization risk

• Target: Project Wide

• Category: Business Logic
• Likelihood: N/A

• Severity: Low
• Impact: Low

Description

At the end of deployment and configuration of the AddressLockProxy, OutputRe-
ceiverProxy, ResonateHelper, and Resonate, ownership is primarily concentrated in
a single account. However, a specially designated sandwich bot is able to access the
proxyCall(...))) and sandwichSnapshot functions in the ResonateHelper. These func-
tions cannot move funds outside of the system but can move the location of funds
within the system for the purpose of snapshot voting. When new pools are added
to resonate they are created along with their own ResonateSmartWallet and PoolS-
martWallet contracts. These wallets can only be accessed by Resonate. There are no
owners of the ERC4626 adapters used to interface between Resonate and the vaults.

In general, the owner of Resonate cannot stop the protocol or withdraw funds other
than through regular use of the protocol. However, they are in control of the address
of the oracle. By manipulating the price of the oracle they could grossly inflate the
number of packets a producer order is entitled to and profit from matches with con-
sumer orders (more in the discussion on oracle risk).

The protocol relies heavily on the proper functioning of several external vaults. Under
the current scope of this audit these include Aave and Yearn. Compromise of these
vaults could break the system and result in loss of funds. This is viewed as an accept-
able and necessary risk.

Resonate also relies on several key contracts in the Revest ecosystem. These include a
registry that returns the address of Revest and the FNFT Handler. Compromise of this
registry could direct Resonate to interact with compromised contracts. Furthermore,
compromise of Revest or the FNFT handler could break the protocol or result in loss
of funds. For example, Revest is responsible for calling critical functions in Resonate
for claiming interest and principal. The burning of FNFTs is handled by Revest, and
the FNFT handler and its compromise could potentially result in repeated claiming of
interest and/or principal.

Impact

Control of Resonate is heavily concentrated in a single account; however, compro-
mise of this account presents limited vectors for exploitation. A compromised owner
account could alter the price oracle to one in their control and use this to exploit the

Zellic 16 Revest Finance

system for financial gain.

The compromise of the sandwich bot could result in abuse of proxyCall and sandwic
hSnapshot, which could disrupt the proper functioning of the protocol.

Recommendations

The use of a multisignature address wallet can prevent an attacker from causing eco-
nomic damage in the event a private key is compromised. Timelocks can also be used
to catch malicious executions. It should be verified that this practice is being followed
for not just the core Resonate contracts (including the sandwich bot) but also the other
contracts it interacts with listed above.

The oracle should be carefully set to a trusted source such as ChainLink or an alter-
native that uses a sufficiently long TWAP. Care needs to be taken in ensuring the price
oracle cannot be manipulated through flash loans or other means of attack.

Remediation

Revest has provided a highly detailed response which adequately addresses our con-
cerns around the access management of critical contracts. Their procedures for man-
aging centralization risk include the following:

• Resonate will use, at a minimum, a 3 of 5 multisig. No more than a simple ma-
jority will be core team members, the remainder will be drawn from the com-
munity. The members of the Resonate multisig will have no more than two
members overlapping with the Revest multisig.

• Sandwich bot access will initially align with Resonate access.
• Revest currently uses a 3 of 7 mutlisig. This will be upgraded to a 4 of 7 soon.
• The registry is currently controlled by a multisig.
• A multisig will be used to control the oracle systems.
• The FNFT handler is immutable.
• An individual will posesses no more than one key on a given multisig. In gen-
eral the use of hardware wallets is either mandated (Resonate) or encouoraged
(Revest, non-officers).

• As progressive decentralization occurs, control overmany of the contracts in the
Revest-Resonate ecosystem will be migrated to intermediary contracts/DAOs.

Zellic 17 Revest Finance

3.6 Missing correct event information

• Target: Resonate

• Category: Coding Mistakes
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

The event triggered in dequeue(...))) does not contain the dequeued order information
but rather the order information of the remaining head.

if(isProvider) {
delete providerQueue[poolId][qm.providerHead++];
emit DequeueProvider(poolId, msg.sender, providerQueue[poolId][qm.
providerHead]);

} else {
delete consumerQueue[poolId][qm.consumerHead++];
emit DequeueConsumer(poolId, msg.sender, consumerQueue[poolId][qm.
consumerHead]);

}

Impact

Providing the removed order in the event would be more useful for event listeners.

Recommendations

Include the correct order information in the event dequeue event.

Remediation

This finding was remediated by Revest in commit 9177c788cb2f3304b16f1583696794f2
4e1a0a92.

Zellic 18 Revest Finance

4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

4.1 Oracle attacks

If an attacker got control of the price oracle, they could pass a low price to sharesPer
Packet during a call to submitProducer(…):

sharesPerPacket = IOracleDispatch(oracleDispatch[vaultAsset][pool.asset])
.getValueOfAsset(vaultAsset, pool.asset, true);

The depressed price would drive up the number of packets of vault shares for interest
claiming.

…

producerPacket = getAmountPaymentAsset(pool.rate * pool.packetSize/
PRECISION, sharesPerPacket, vaultAsset, vaultAsset);…

producerOrder = Order(uint112(amount/ producerPacket), sharesPerPacket,
msg.sender.fillLast12Bytes());

They would get matched with a higher amount of underlying vault principal for the
same dollar amount of pool asset deposited, allowing them to earn excessive inter-
est. Similar to the points in the section on centralization risk, this attack vector is best
managed by 1) using a multisig to set the price oracle address and 2) using a reliable
price oracle such as ChainLink.

Revest acknowledges this risk. They emphasize that oracle systems require admin-
isitrative controls and indicate the use of multisigs and timelocks as eventual control
measures.

4.2 Reentrancy

There are sections of code that do not follow the checks-interactions-effects design
pattern used to prevent reentrancy attacks. There are limited possibilities for exe-

Zellic 19 Revest Finance

cution control to pass outside of safety. Furthermore, it appears that in most cases
other system variables (outside of those accounting for balances before and after fund
transfer) are used to prevent reentering the contract. However, there is no reason not
to use the nonReentrantmodifier to prevent any possibility of reentry.

Revest has applied the nonReentrant modifier on all pertinent functions in Resonate,
ResonateSmartWallet, and PoolSmartWallet - commit b81a509b41524c896f8bfa75785
b554496e16080.

4.3 Code maturity

Follow the adopted conventions for internal and private variables

Best practices for solidity development use the _ to prefix both internal and private
variables and functions.

Thiswas addressed by Revest in commit b81a509b41524c896f8bfa75785b554496e16080.

Reliance on integer underflow reversion

In numerous places reversion by integer underflow is used as an implicit check that
withdraw amounts do not exceed available funds. For example, this happens in rece
iveResonateOutput(...))) as there is no check made on the function parameter quanti
ty. It also happens in modifyExistingOrder as there is no check on amount. Including
explicit checks on these parameters would send clear messages to protocol users
under transaction failure and improve the overall user experience.

Revest indicated they may address this in the future.

Confusing variable names

In general the variables are intuitively named. However, the method getAddressForFN
FT(bytes32 fnftId) in ResonateHelper takes an fnftId parameter but is in fact passed
a poolId. This can create some developer confusion because the variable name fnft
Id is also used in Resonate to denote the ID of the FNFT. We suggest Revest change
the parameter name from fnftId to poolId.

Revest indicated this has been addressed.

Clear comments

At the time of audit the Resonate project is still a work in progress. There are many
comments left for other developers that take the form of questions and to-do lists.
There is also a general lack of good-quality comments that would be useful for some-

Zellic 20 Revest Finance

one not intimately familiar with the code base. This applies to both the core contracts
and their interfaces. For example, the following comment indicates awork in progress
but also points to an unused variable:

function maxDeposit(address _account)
public
view
override
returns (uint256)

{
_account; /) TODO can acc custom logic per depositor
VaultAPI _bestVault = yVault;
uint256 _totalAssets = _bestVault.totalAssets();
uint256 _depositLimit = _bestVault.depositLimit();
if (_totalAssets >= _depositLimit) return 0;
return _depositLimit - _totalAssets;

}

Revest has made considerable improvements to the inline documentation.

Unused resources

There are potentially unused resources in the project; for example, FullMath is never
used for uint256 in Resonate.

Revest has removed the unused library - 6b1b81f6c0310297f5b6cd9a258b99e43c61b092.

Control variables and abstraction

Using values of process variables like depositedShares to indicate pool and order con-
figurations is challenging to read. And furthermore, as we have seen in these report
findings, it is error prone. Revest should consider adding another layer of abstraction
to more clearly illustrate pool and order configurations.

4.4 Composability

As indicated in the finding on centralization risk, the Resonate protocol relies heavily
on composability. It is therefore important to note that the improper functioning of
any of the composable contracts lying outside of the scope of this audit is likely to
cause considerable failure in Resonate. These contracts include the investment vaults
(Aave and Yearn), the oracle price sources, Revest, the Revest registry, and the Revest

Zellic 21 Revest Finance

FNFT handler.

It is important to note that similar suggestions and observations presented in the cen-
tralization risk finding also apply to these dependencies as well.

Zellic 22 Revest Finance

5 Audit Results

At the time of our audit, the code was not deployed to mainnet evm.

During our audit, we discovered 6 findings. One of which was critical, one of which
was medium risk, and the remaining four were split evenly between low risk and in-
formational.

5.1 Disclaimers

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic, of course, also cannot make guarantees about any
additional code added to the assessed project after the audit version of our assess-
ment. Furthermore, because a single assessment can never be considered compre-
hensive, we always recommendmultiple independent assessments pairedwith a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code in these recom-
mendations are intended to convey how an issue may be resolved (i.e., the idea), but
they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 23 Revest Finance

	About Zellic
	Executive Summary
	Introduction
	About Resonate
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Missing validation check in createPool can result in loss of user funds
	Failure to cancel orders in modifyExistingOrder
	Failed approval check in calculateAndClaimInterest
	Missing validation check in proxyCall filter can allow dangerous calls
	Centralization risk
	Missing correct event information

	Discussion
	Oracle attacks
	Reentrancy
	Code maturity
	Composability

	Audit Results
	Disclaimers

