
Security Audit Report for Resonate Oracle

Date: September 1, 2022

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 1

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 2

1.4 Security Model . 3

2 Findings 4
2.1 DeFi Security . 4

2.1.1 Potential price manipulation . 4

2.1.2 Unhandled token decimals when calculating the oracle prices 6

2.1.3 Ineffective check of Chainlink oracle data . 7

2.1.4 Incorrect assumption of the quote token . 9

2.2 Additional Recommendation . 10

2.2.1 Remove the unused function . 10

2.2.2 Emit events when updating important state variables 10

2.2.3 Avoid consecutive division . 10

2.3 Note . 11

2.3.1 Range check of ChainLink prices . 11

2.3.2 Potential integer overflow of Uniswap cumulative prices 11

2.3.3 The maintenance of price updates of UniswapV2TWAPOracle 12

2.3.4 Different sources of Chainlink oracle . 12

i

Report Manifest

Item Description
Client Revest
Target Resonate Oracle

Version History

Version Date Description
1.0 September 1, 2022 First Release

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is Resonate Oracle, which is used to provide price oracles for the Resonate

project. The audit scope is limited to the contracts under the hardhat/contracts/oracles folder in the

repository 1.

The auditing process is iterative. Specifically, we audit the initial version and following commits that

fix the discovered issues. If there are new issues, we will continue this process. The commit hash values

during the audit are shown in the following table. Our audit report is responsible for the code in the initial

version (Version 1), as well as new code (in the following versions) to fix issues in the audit report.

Project Version Commit Hash

Resonate Oracle
Version 1 db62bb068f1530191346c56c483a24c2f3b3dda9

Version 2 95a10a569bb0955aae47d5fa0f918da9d0640e1b

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

1https://github.com/Revest-Finance/Resonate/

1

https://github.com/Revest-Finance/Resonate/

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

2

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find four potential issues. Besides, we have three recommendations and four notes.

- High Risk: 3

- Medium Risk: 1

- Recommendation: 3

- Note: 4

ID Severity Description Category Status
1 Medium Potential price manipulation DeFi Security Fixed

2 High
Unhandled token decimals when calculating
the oracle prices

DeFi Security Fixed

3 High Ineffective check of Chainlink oracle data DeFi Security Fixed
4 High Incorrect assumption of the quote token DeFi Security Fixed
5 - Remove the unused function Recommendation Fixed

6 -
Emit events when updating important state
variables

Recommendation Fixed

7 - Avoid consecutive division Recommendation Fixed
8 - Range check of ChainLink prices Note

9 -
Potential integer overflow of Uniswap cumula-
tive prices

Note

10 -
The maintenance of price updates of
UniswapV2TWAPOracle

Note

11 - Different sources of Chainlink oracle Note

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Potential price manipulation

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the _getLPPrice function of the BalancerV2WeightedPoolPriceOracle contract, there ex-

ists a potential vulnerability which can be used to perform the price manipulation attack.

In this function, the price of the LP token is calculated based on division, i.e., dividing the total value

of tokens in the pool by the total supply of the LP token, as follows:

PLP =

∑
piBi

L
Here pi is the canonical price of the i-th token in the pool fetched from other providers, while Bi is the

balance of the i-th token in the pool. Besides, L is the total supply of the LP token.

98 function _getLPPrice(address _bpt, bool isSafePrice)

99 internal

100 view

101 returns (uint256 price)

4

102 {

103 bytes32 poolId = IBPoolV2(_bpt).getPoolId();

104 uint256[] memory weights = IBPoolV2(_bpt).getNormalizedWeights();

105 uint256 totalSupply = IBPoolV2(_bpt).totalSupply();

106 (IERC20[] memory tokens, uint256[] memory balances,) = vault.getPoolTokens(

107 poolId

108);

109
110 uint256 totalFTM;

111 uint256[] memory prices = new uint256[](tokens.length);

112 // update balances in 18 decimals

113 for (uint256 i = 0; i < tokens.length; i++) {

114 balances[i] =

115 (balances[i] * (10**18)) /

116 (10**ERC20(address(tokens[i])).decimals());

117 prices[i] = isSafePrice

118 ? _getTokenSafePrice(address(tokens[i]))

119 : _getTokenCurrentPrice(address(tokens[i]));

120
121 if (i >= 1) {

122 _checkRatio(

123 (balances[i - 1] * 10**18) / weights[i - 1],

124 (balances[i] * 10**18) / weights[i],

125 prices[i - 1],

126 prices[i]

127);

128 }

129
130 totalFTM += balances[i] * prices[i];

131 }

132
133 price = totalFTM / totalSupply;

134 }

Listing 2.1: BalancerV2WeightedPoolPriceOracle.sol

To avoid fetching price from an unbalanced pool, there is a _checkRatio function that checks the spot

price of a token pair in the pool and the ratio of the canonical price of this pair. In Balancer, the spot price

of two tokens in the pool is determined by:

SP o
i =

Bi/Wi

Bo/Wo

Here (Bi, Bo) is the balance of the token pair in the pool, while (Wi,Wo) is the corresponding weights of

the tokens in the pool.

Specifically, in the _checkRatio function, it is required that the ratio difference should fall into an

acceptable range. However, the check is performed only between neighboring tokens in the tokens array,

which means the differences can accumulate. The longer the tokens array is, the larger the accumulation

could be. Specifically, if the allowed diffLimit (line 144 in the _checkRatio function) is 5% and the length

of tokens is 5, the normalized value of the last token can be 1.054 = 1.2155 times the normalized value

of the first token. By carefully manipulating the token balances in the pool, an attacker can eventually

manipulate the calculation of the LP token price.

5

136 function _checkRatio(

137 uint256 reserve0,

138 uint256 reserve1,

139 uint256 price0,

140 uint256 price1

141) internal view {

142 uint256 value0 = reserve0 * price0;

143 uint256 value1 = reserve1 * price1;

144 uint256 diffLimit = (value0 * ratioDiffLimitNumerator) /

145 ratioDiffLimitDenominator;

146
147 require(

148 value1 < value0 + diffLimit && value0 < value1 + diffLimit,

149 "INVALID RATIO"

150);

151 }

Listing 2.2: BalancerV2WeightedPoolPriceOracle.sol

Impact Price manipulation may enlarge the LP token’s price and cause financial losses.

Suggestion Revise the code logic to make the calculation resistant to the price manipulation attack.

Feedback from the Project Revest Finance derived an equation to describe how to value BPT tokens

securely and implemented it.

2.1.2 Unhandled token decimals when calculating the oracle prices

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description Oracles are all registered in a PriceProvider contract, which can be invoked to fetch token

prices. To support different tokens, it is reasonable to assume that these oracles should have a uniform

output format. Specifically, all oracle prices should be consistent with the format of
1 unit A token

1 unit B token
× PRECISION

Note that 1 unit token equals to 10D wei tokens where D is the decimal of the token, while the B token

should always be WETH, and PRECISION is 1018.

Based on the above assumption, there are two cases that token decimals are not properly handled:

1. In the _getLPPrice function of the UniswapV2LPPriceOracle contract, the LP token price is calculated

by adopting the Fair LP Token Pricing Formula 1 for Uniswap. However, the meaning of the formula

is that the price is the total value of the pair tokens divided by the total supply of the LP token, which

represents the value of LP token per wei. The result is directly returned as the price, however, other

prices from the oracles are the values of the tokens per unit, as described earlier.

52 function _getLPPrice(address pair, bool isSafePrice) internal view returns (uint price)

{

53 address token0 = IUniswapV2Pair(pair).token0();

1https://blog.alphaventuredao.io/fair-lp-token-pricing/

6

https://blog.alphaventuredao.io/fair-lp-token-pricing/

54 address token1 = IUniswapV2Pair(pair).token1();

55 uint totalSupply = IUniswapV2Pair(pair).totalSupply();

56 (uint r0, uint r1,) = IUniswapV2Pair(pair).getReserves();

57 uint sqrtR = (r0*r1).sqrt();

58
59 uint p0 = isSafePrice ? provider.getSafePrice(token0) : provider.getCurrentPrice(

token0);

60 uint p1 = isSafePrice ? provider.getSafePrice(token1) : provider.getCurrentPrice(

token1);

61 uint sqrtP = (p0*p1).sqrt();

62 price =(2*sqrtR*sqrtP) / totalSupply; // in 1E18 precision

63 }

Listing 2.3: UniswapV2LPPriceOracle.sol

2. In the _convertPrice function of the UniswapV2TWAPOracle contract, the argument named lastUpdatePrice

is the ratio of the reserves in the Uniswap pair, which represents the ratio of the amount of the tokens

in wei, not in unit. The result does not handle different token decimals.

71 function getSafePrice(address asset) public view returns (uint256 amountOut) {

72 require(block.timestamp - twaps[asset].timestampLatest <= MAX_UPDATE, ’ER037’);

73 TwapConfig memory twap = twaps[asset];

74 amountOut = _convertPrice(asset, twap.lastUpdateTwapPrice);

75 }

Listing 2.4: UniswapV2TWAPOracle.sol

114 function _convertPrice(address asset, FixedPoint.uq112x112 memory lastUpdatePrice)

private view returns (uint amountOut) {

115 uint112 nativeDecimals = uint112(10**IERC20Metadata(asset).decimals());

116 // calculate the value based upon the average cumulative prices

117 // over the time period (TWAP)

118 if (TOKEN == WETH) {

119 // No need to convert the asset

120 amountOut = lastUpdatePrice.mul(PRECISION).decode144();

121 } else {

122 // Need to convert the feed to be in terms of ETH

123 uint conversion = provider.getSafePrice(TOKEN);

124 amountOut = lastUpdatePrice.mul(conversion).decode144();

125 }

126 }

Listing 2.5: UniswapV2TWAPOracle.sol

Impact Unhandled token decimals may lead to severe price deviation and financial losses.

Suggestion Revise the code logic accordingly.

2.1.3 Ineffective check of Chainlink oracle data

Severity High

Status Fixed in Version 2

Introduced by Version 1

7

Description In the _feedPrice function of the ChainlinkPriceOracle contract, the token price is fetched

by calling the latestRoundData function of the Chainlink Aggregator contract through the interface named

AggregatorV3Interface. To ensure the price is updated within an acceptable delay, this function checks

whether timestamp - startedAt is less than MIN_TIME or not.

71 function _feedPrice(address _feed) internal view returns (uint256 latestUSD) {

72
73 /// To allow for TOKEN-ETH feeds on one oracle, TOKEN-USD feeds on another

74 if(_feed == address(0)) {

75 return PRECISION;

76 }

77
78 (uint80 roundID, int256 answer, uint256 startedAt, uint256 timestamp, uint80

answeredInRound) = AggregatorV3Interface(_feed).latestRoundData();

79
80 require(answer > 0, "E112");

81 require(answeredInRound >= roundID, "E113a");

82 require(timestamp != 0, "E113b");

83
84 // difference between when started and returned needs to be less than 60-minutes

85 // require(block.timestamp - timestamp < MIN_TIME, "E113c");

86 require(timestamp - startedAt < MIN_TIME, "E113d");

87
88 return uint256(answer);

89 }

Listing 2.6: ChainlinkPriceOracle.sol

However, the implementation of the Chainlink Aggregator V3 contracts do not behave as expected.

Specifically, only some of the these contracts would return the meaningful startedAt values, as stated by

Chainlink 2. Things get worse when it comes to the Chainlink Aggregator V4 contracts, which are backward

compatible with the V3 interface. As the code snippet shown in the below, the returned startedAt and

updatedAt (i.e., startedAt and timestamp in the _feedPrice function) are the same with each other in the

V4 contracts. As a result, the check in line 86 of the ChainlinkPriceOracle contract is ineffective.

791 function latestRoundData()

792 public

793 override

794 view

795 virtual

796 returns (

797 uint80 roundId,

798 int256 answer,

799 uint256 startedAt,

800 uint256 updatedAt,

801 uint80 answeredInRound

802)

803 {

804 roundId = s_hotVars.latestAggregatorRoundId;

805

2https://github.com/smartcontractkit/chainlink/blob/e1e78865d4f3e609e7977777d7fb0604913b63ed/contracts/

src/v0.6/EACAggregatorProxy.sol#L192

8

https://github.com/smartcontractkit/chainlink/blob/e1e78865d4f3e609e7977777d7fb0604913b63ed/contracts/src/v0.6/EACAggregatorProxy.sol#L192
https://github.com/smartcontractkit/chainlink/blob/e1e78865d4f3e609e7977777d7fb0604913b63ed/contracts/src/v0.6/EACAggregatorProxy.sol#L192

806 // Skipped for compatability with existing FluxAggregator in which latestRoundData never

reverts.

807 // require(roundId != 0, V3_NO_DATA_ERROR);

808
809 Transmission memory transmission = s_transmissions[uint32(roundId)];

810 return (

811 roundId,

812 transmission.answer,

813 transmission.timestamp,

814 transmission.timestamp,

815 roundId

816);

817 }

Listing 2.7: OffchainAggregator.sol

Impact Potential incorrect price calculation due to the stale prices fed to the contracts.

Suggestion Revise the code (e.g., using the difference between block.timestamp and updatedAt).

2.1.4 Incorrect assumption of the quote token

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description As stated in Issue 2.1.2, all the oracle price query interfaces must return prices with WETH

as the quote token. On the other side, the getCurrentPrice function in the UniswapV2TWAPOracle contract

returns the price with the state variable TOKEN as the quote token. Obviously, it assumes that TOKEN is just

WETH. However, this assumption may not be true. For example, the _convertPrice function (see Listing 2.5)

first checks the equality of TOKEN and WETH, and then takes different actions based on the result.

80 function getCurrentPrice(address asset) public view returns (uint256 amountOut) {

81 TwapConfig memory twap = twaps[asset];

82 IUniswapV2Pair pair = IUniswapV2Pair(twap.pairAddress);

83
84 (uint reserve0, uint reserve1,) = pair.getReserves();

85 if (twap.isToken0) {

86 uint8 _token1MissingDecimals = 18 - (IERC20Detailed(TOKEN).decimals());

87 amountOut = (reserve1 * (10**_token1MissingDecimals) * PRECISION) / reserve0;

88 } else {

89 uint8 _token0MissingDecimals = 18 - (IERC20Detailed(TOKEN).decimals());

90 amountOut = (reserve0 * (10**_token0MissingDecimals) * PRECISION) / reserve1;

91 }

92 }

Listing 2.8: UniswapV2TWAPOracle.sol

Impact The incorrect assumption of the quote token may lead to unexpected results.

Suggestion Revise the code logic.

9

2.2 Additional Recommendation

2.2.1 Remove the unused function

Status Fixed in Version 2

Introduced by Version 1

Description The function named _divide in the UniswapV2TWAPOracle contract is declared but not used.

Impact N/A

Suggestion Remove the unused function.

2.2.2 Emit events when updating important state variables

Status Fixed in Version 2

Introduced by Version 1

Description In the SimpleOracle contract, there are two functions that modify important state variables

without emitting events.

39 function updatePrice(address token, uint price) external onlyAdmin(token) {

40 _currentPrices[token] = price;

41 }

Listing 2.9: SimpleOracle.sol

43 function setAdminStatus(address token, address admin, bool isApproved) external onlyOwner {

44 tokenAdmins[token][admin] = isApproved;

45 }

Listing 2.10: SimpleOracle.sol

Impact N/A

Suggestion Emit events when updating important variables.

2.2.3 Avoid consecutive division

Status Fixed in Version 2

Introduced by Version 1

Description In the _tokenPriceFromWeights function of the BalancerV2PriceOracle contract, the final

result is calculated from a consecutive division, which may cause precision loss. It is recommended to

multiply the divisors before the division rather than consecutive division.

179 function _tokenPriceFromWeights(

180 IERC20 token0,

181 IERC20 token1,

182 uint256 balance0,

183 uint256 balance1,

184 uint256 weight0,

185 uint256 weight1

186) internal view returns (uint256) {

10

187 uint256 pairTokenPrice = _getTokenCurrentPrice(

188 IPriceOracle(denominatedOracles[address(token0)]),

189 token1

190);

191
192 // price = balance1 / balance0 * weight0 / weight1 * usdPrice1

193
194 // in denominated token price decimals

195 uint256 assetValue = (balance1 * pairTokenPrice) /

196 (10**ERC20(address(token1)).decimals());

197 // in denominated token price decimals

198 return

199 (assetValue * weight0 * (10**ERC20(address(token0)).decimals())) /

200 weight1 /

201 balance0;

202 }

Listing 2.11: BalancerV2PriceOracle.sol

Impact May lead to precision loss.

Suggestion Revise the code accordingly.

2.3 Note

2.3.1 Range check of ChainLink prices

Introduced by Version 1

Description As noted in the Chainlink document 3, the data feed aggregator contract has the minAnswer

and maxAnswer variables, which prevent the aggregator from updating the latestAnswer outside the agreed

range of acceptable values. To perform the best practice, the ChainlinkPriceOracle contract should check

the return value of the Chainlink aggregator to guarantee the validity of the price, and take proper actions

if necessary.

2.3.2 Potential integer overflow of Uniswap cumulative prices

Introduced by Version 1

Description In the updateSafePrice function of the UniswapV2TWAPOracle contract, the price update pro-

cedure fetches a variable named cumulativeLast and subtracts another variable named lastCumPrice to

get the difference. However, cumulativeLast is the price{0,1}CumulativeLast variable in the Uniswap

pair, which increases over time and can overflow by design. However, the updateSafePrice function

doesn’t consider the overflow case. Since the compiler version is over 0.8.0, once the price{0,1}CumulativeLast

variable overflows, the updateSafePrice function will revert, which may lead to the DoS to the contract. It

is not considered as an issue due to the low possibility, however, it still needs to be noted in the report.

97 function updateSafePrice(address asset) public returns (uint256 amountOut) {

98 // This method will fail if the TWAP has not been initialized on this contract

3https://docs.chain.link/docs/using-chainlink-reference-contracts/#monitoring-data-feeds

11

https://docs.chain.link/docs/using-chainlink-reference-contracts/#monitoring-data-feeds

99 // This action must be performed externally

100 (uint cumulativeLast, uint lastCumPrice, uint32 lastTimeSync, uint32 lastTimeUpdate) =

_fetchParameters(asset);

101 TwapConfig storage twap = twaps[asset];

102 FixedPoint.uq112x112 memory lastAverage;

103 lastAverage = FixedPoint.uq112x112(uint224((cumulativeLast - lastCumPrice) / (lastTimeSync

- lastTimeUpdate)));

104 twap.lastUpdateTwapPrice = lastAverage;

105 twap.lastUpdateCumulativePrice = cumulativeLast;

106 twap.timestampLatest = lastTimeSync;

107
108 // Call sub method HERE to same thing getSafePrice uses to avoid extra SLOAD

109 amountOut = _convertPrice(asset, lastAverage);

110 }

Listing 2.12: UniswapV2TWAPOracle.sol

128 function _fetchParameters(

129 address asset

130) private view returns (

131 uint cumulativeLast,

132 uint lastCumPrice,

133 uint32 lastTimeSync,

134 uint32 lastTimeUpdate

135) {

136 TwapConfig memory twap = twaps[asset];

137 require(twap.decimals > 0, ’ER035’);

138 // Enforce passage of a safe amount of time

139 lastTimeUpdate = twap.timestampLatest;

140 require(block.timestamp > lastTimeUpdate + MIN_UPDATE, ’ER036’);

141 IUniswapV2Pair pair = IUniswapV2Pair(twap.pairAddress);

142 cumulativeLast = twap.isToken0 ? pair.price0CumulativeLast() : pair.price1CumulativeLast();

143 lastCumPrice = twap.lastUpdateCumulativePrice;

144 (, , lastTimeSync) = pair.getReserves();

145 }

Listing 2.13: UniswapV2TWAPOracle.sol

2.3.3 The maintenance of price updates of UniswapV2TWAPOracle

Introduced by Version 1

Description The TWAP price in UniswapV2TWAPOracle contract should be constantly updated by invoking

the updateSafePrice function. Otherwise, there’s no other way to update the price. As such, the project

should monitor the time interval between the calls to the updateSafePrice function and trigger the update

procedure automatically.

2.3.4 Different sources of Chainlink oracle

Introduced by Version 1

Description In the ChainlinkPriceOracle contract, different tokens are linked to the corresponding

Chainlink oracle contracts in the setPriceFeed function.

12

26 function setPriceFeed(address _token, address _feed) external onlyOwner {

27 priceFeed[_token] = _feed;

28
29 emit SetPriceFeed(_token, _feed);

30 }

Listing 2.14: ChainlinkPriceOracle.sol

Then the oracle price to be output is calculated by comparing the token price fetched from the Chain-

link oracle and a BASE_PRICE_FEED after adjusting the decimal. Depending on the base token, Chainlink

oracles may have different decimals, so a fixed decimals variable is not enough. To make this procedure

reasonable, there is a requirement that all the Chainlink oracles set in the priceFeed mapping should re-

turn the prices with the same decimal, which means the prices should be all in USD or all in ETH. This

requirement can be satisfied through the invocation to the setPriceFeed function with proper parameters

set by the project.

32 function getSafePrice(address _token) public view returns (uint256 _amountOut) {

33 return getCurrentPrice(_token);

34 }

35
36 function getCurrentPrice(address _token) public view returns (uint256 _amountOut) {

37 require(priceFeed[_token] != address(0), "UNSUPPORTED");

38
39 _amountOut = _divide(

40 _feedPrice(priceFeed[_token]),

41 _feedPrice(BASE_PRICE_FEED),

42 decimals

43);

44 }

Listing 2.15: ChainlinkPriceOracle.sol

13

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Potential price manipulation
	2.1.2 Unhandled token decimals when calculating the oracle prices
	2.1.3 Ineffective check of Chainlink oracle data
	2.1.4 Incorrect assumption of the quote token

	2.2 Additional Recommendation
	2.2.1 Remove the unused function
	2.2.2 Emit events when updating important state variables
	2.2.3 Avoid consecutive division

	2.3 Note
	2.3.1 Range check of ChainLink prices
	2.3.2 Potential integer overflow of Uniswap cumulative prices
	2.3.3 The maintenance of price updates of structurecolorUniswapV2TWAPOracle
	2.3.4 Different sources of Chainlink oracle

		2022-09-01T22:24:39+0800
	BlockSec Audit Team

