
Security Audit Report for Resonate

Date: Aug 18, 2022

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Inconsistent rounding check . 4

2.1.2 Immutable variable derives from mutable state . 5

2.1.3 Precision losses . 6

2.1.4 Incorrect parameters for amount conversion . 9

2.1.5 Unhandled corner case . 10

2.2 DeFi Security . 12

2.2.1 Mixed usages of pool asset and vault asset . 12

2.2.2 Infinite claims of interest . 16

2.2.3 Arbitrary transfer via proxyCall . 16

2.2.4 Price manipulation attack . 17

2.3 NFT Security . 18

2.3.1 Potential DoS attack . 18

2.4 Additional Recommendation . 20

2.4.1 Check parameters in constructors and governance functions 20

2.4.2 Move state variable changes out of event logs . 20

2.4.3 Remove unused struct fields . 21

2.4.4 Refactor clearing mapping fields into a delete statement 21

2.4.5 Remove duplicate calls in the OutputReceiverProxy contract 22

2.4.6 Check the pool in the MasterChefAdapter contract 22

2.5 Note . 23

2.5.1 Refunding procedure . 23

2.5.2 ID continuity assumption of the interest and principal FNFTs 25

2.5.3 Potential vulnerability in the harvest function . 27

i

Report Manifest

Item Description
Client Revest Finance
Target Resonate

Version History

Version Date Description
1.0 Aug 18, 2022 First Release

About BlockSec The BlockSec focuses on the security of the blockchain ecosystem and collaborates

with leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers

and experienced experts from both academia and industry. They have published multiple blockchain se-

curity papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and suc-

cessfully protected digital assets that are worth more than 5 million dollars by blocking multiple attacks.

They can be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is Resonate 1, a project that aims to provide a financial tool with the concept of

time-value-of-money. The users of this project can be classified into two categories, i.e., consumers and

providers. Specifically, the consumers hold capital for staking into the underlying protocols (e.g., Yearn and

AAVE) and they would like to receive cash rather than the future interests. While as the counterparty, the

providers would rather pay cash for more profitable future interests. Resonate can match the consumers

and the providers to serve their demands on both sides.

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

Project Commit SHA

Resonate
Version 1 9177c788cb2f3304b16f1583696794f24e1a0a92

Version 2 f08d7dda78de0f0835c55d81b33f36ccca381c01

Note that, this audit does NOT cover all modules in the repository. Specifically, the smart contracts

under the hardhat/contracts/oracle folder (introduced by Version 2) are excluded.

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

1https://github.com/Revest-Finance/Resonate

1

https://github.com/Revest-Finance/Resonate

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

2

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find ten potential issues. We have six recommendations and three notes.

- High Risk: 4

- Medium Risk: 3

- Low Risk: 3

- Recommendation: 6

- Note: 3

ID Severity Description Category Status
1 Low Inconsistent rounding check Software Security Acknowledged

2 Low
Immutable variable derives from mutable state

Software Security Acknowledged

3 Medium Precision losses Software Security Fixed
4 Medium Incorrect parameters for amount conversion Software Security Fixed
5 Low Unhandled corner case Software Security Fixed
6 High Mixed usages of pool asset and vault asset DeFi Security Fixed
7 Medium Infinite claims of interest DeFi Security Fixed
8 High Arbitrary transfer via proxyCall DeFi Security Fixed
9 High Price manipulation attack DeFi Security Fixed
10 High Potential DoS attack NFT Security Fixed

11 -
Check parameters in constructors and gover-
nance functions

Recommendation Fixed

12 - Move state variable changes out of event logs Recommendation Fixed
13 - Remove unused struct fields Recommendation Fixed

14 -
Refactor clearing mapping fields into a delete

statement
Recommendation Fixed

15 -
Remove duplicate calls in the
OutputReceiverProxy contract

Recommendation Fixed

16 -
Check the pool in the MasterChefAdapter con-
tract

Recommendation Acknowledged

17 - Refunding procedure Note

18 -
ID continuity assumption of the interest and
principal FNFTs

Note

19 - Potential vulnerability in the harvest function Note

The details are provided in the following sections.

2.1 Software Security

2.1.1 Inconsistent rounding check

Severity Low

Status Acknowledged

Introduced by Version 1

Description In the Resonate contract, pools are created for different underlying protocols and fee rates.

These pools are used to provide a place for the consumers and producers to match their orders. For each

4

pool, user deposits are divided into packets with a fixed packet size specified by a parameter named

packetSize. However, there exist three different types of rounding checks for calculations related to

packetSize, as follows:

A check with less-than in the submitProducer function (Line 312).

308 if (vaultAsset == pool.asset) {

309 sharesPerPacket = shouldFarm ? 1 : 0;

310 producerPacket = pool.packetSize * pool.rate / PRECISION;

311 // return; //39533

312 require(amount % producerPacket < 5, ’ER006’); //This should fail, but it’s not because

amount is already 0

313 }

Listing 2.1: Resonate.sol

A check with less-than-or-equal-to in the submitConsumer function (Line 184). Notice that the error

code is also not the same.

180 function submitConsumer(bytes32 poolId, uint amount) external nonReentrant {

181 // Common code

182 PoolConfig memory pool = pools[poolId];

183 require(amount > 0, ’ER003’);

184 require(amount % pool.packetSize <= 5, ’ER005’); //be within 10 gwei to handle round-

offs

185 ...

186 }

Listing 2.2: Resonate.sol

Rounding by division without any check in the submitProducer function (Line 317).

314 shouldFarm = false;

315 sharesPerPacket = IOracleDispatch(oracleDispatch[vaultAsset][pool.asset]).

getValueOfAsset(vaultAsset, pool.asset, true);

316 producerPacket = _getAmountPaymentAsset(pool.rate * pool.packetSize/PRECISION,

sharesPerPacket, vaultAsset, vaultAsset);

317 amount = amount / producerPacket * producerPacket; // Is this a rounding operation?,

would be safer to use modulo subtraction

318 require(amount > 0, "ER003");

Listing 2.3: Resonate.sol

Impact Inconsistent rounding check may results in unexpected behaviors.

Suggestion Make the rounding checks consistent.

Feedback from the Project This is not an issue, it is a design decision. Lidos StETH contains a corner-

case where some amount of wei of StETH may be rounded off and remain with the user after a transfer

based on the packetSize. As a result to ensure the full amount is transferred to the vaults/consumers,

allowing a slight confidence-interval on deposit ensures the proper amount is transferred and not rounded-

off.

2.1.2 Immutable variable derives from mutable state

Severity Low

5

Status Acknowledged

Introduced by Version 1

Description In the OutputReceiverProxy contract, the FNFT_HANDLER address is derived from the addressRegistry

state variable in the constructor. However, the FNFT_HANDLER is an immutable state variable, while addressRegistry

can be modified in setAddressRegistry function.

27 IFNFTHandler private immutable FNFT_HANDLER;

28
29 constructor(address _addressRegistry) {

30 addressRegistry = _addressRegistry;

31 TOKEN_VAULT = IAddressRegistry(_addressRegistry).getTokenVault();

32 FNFT_HANDLER = IFNFTHandler(IAddressRegistry(_addressRegistry).getRevestFNFT());

33 }

Listing 2.4: OutputReceiverProxy.sol

110 function setAddressRegistry(address _addressRegistry) external onlyOwner {

111 addressRegistry = _addressRegistry;

112 }

Listing 2.5: OutputReceiverProxy.sol

Impact The immutable variable cannot be updated when the variable it derives from changes.

Suggestion N/A

Feedback from the Project This is not an issue, it is a design decision. The entry point may need to

change, but the FNFT handler should never be mutable.

2.1.3 Precision losses

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description There are two precision loss problems in the project.

The first problem is in the _activateCapital function of Resonate contract. Specifically, the producers

and consumers submit their orders to the Resonate contract and the contract matches the orders with their

counterparties. If there is no counterparty, the orders will be pushed into the corresponding queues and

the assets are deposited into the underlying adapter vaults. The shares minted are kept in the pool wallet

on behalf of the users.

Whenever a new consumer order (or producer order) is matched with a counterparty order in the

queue, the _activateCapital function is called to invoke the corresponding function of the pool wallet

to get the number of total shares deposited into the underlying adapter. These shares would be divided

by the number of packets (Line 713 and Line 738). This procedure incurs a precision loss. Due to the

precision loss of the integer division, there would be some residual shares left in the pool wallet, which

could bring financial loss to the user.

672 function _activateCapital(

673 ParamPacker memory packer

6

674) private returns (uint principalId) {

675 // Double check in the future on the vaultAdapters

676 IERC4626 vault = IERC4626(packer.adapter);

677 address vaultAsset = vault.asset(); // The native asset

678 // Fetch curPrice if necessary

679 // State where it would be zero is when producer order is being submitted for non-farming

position

680 // Needs to come before FNFT creation, since curPrice is saved within that storage

681
682 // Need to withdraw from the vault for this operation if value was previously stored in it

683 // Utilize this opportunity to charge fee on interest that has accumulated during dwell time

684 uint amountFromConsumer = packer.quantityPackets * packer.pool.packetSize;

685 uint amountToConsumer = packer.isCrossAsset ? (

686 _getAmountPaymentAsset(

687 amountFromConsumer * packer.pool.rate / PRECISION,

688 packer.currentExchangeRate,

689 packer.pool.asset,

690 vaultAsset)

691) : amountFromConsumer * packer.pool.rate / PRECISION; //upfront?

692
693 if(packer.isProducerNew) {

694 {

695 address consumerOwner = packer.consumerOrder.owner.toAddress();

696 // The producer position is the new one, take value from them and transfer to consumer

697 IERC20(packer.pool.asset).safeTransferFrom(msg.sender, consumerOwner, amountToConsumer)

;

698
699 // Prepare the desired FNFTs

700 principalId = _createFNFTs(packer.quantityPackets, packer.poolId, consumerOwner, packer

.producerOrder.owner.toAddress());

701 }

702 {

703 // Claim interest on the farming of the consumer’s capital

704 (uint shares, uint interest) = IPoolWallet(_getAddressForPool(packer.poolId)).

activateExistingConsumerPosition(

705 amountFromConsumer,

706 packer.quantityPackets * packer.consumerOrder.depositedShares,

707 _getAddressForFNFT(packer.poolId),

708 DEV_ADDRESS,

709 packer.pool.vault,

710 packer.adapter

711);

712
713 shares /= packer.quantityPackets;

714
715 Active storage active = activated[principalId];

716 active.sharesPerPacket = shares;

717 if(packer.pool.addInterestRate != 0) {

718 active.startingSharesPerPacket = shares;

719 }

720
721 emit FeeCollection(packer.poolId, interest);

722 }

7

723
724
725 } else {

726 // The consumer position is the new one, take stored producer value and transfer to them

727 // If the producer was farming, we can detect this and charge our fee on interest

728
729 address producerOwner = packer.producerOrder.owner.toAddress();

730
731 // Need to deposit to vault from consumer and store in FNFT

732 IERC20(vaultAsset).safeTransferFrom(msg.sender, address(this), amountFromConsumer);

733
734 // Prepare the desired FNFTs

735 principalId = _createFNFTs(packer.quantityPackets, packer.poolId, packer.consumerOrder.

owner.toAddress(), producerOwner);

736 {

737 Active storage active = activated[principalId];

738 uint shares = vault.deposit(amountFromConsumer, _getAddressForFNFT(packer.poolId)) /

packer.quantityPackets;

739 active.sharesPerPacket = shares;

740 if(packer.pool.addInterestRate != 0) {

741 active.startingSharesPerPacket = shares;

742 }

743
744 }

745
746
747 // Need to then pay out to consumer from producer position

748 if(packer.producerOrder.depositedShares > 0 && !packer.isCrossAsset) {

749 uint interest = IPoolWallet(_getAddressForPool(packer.poolId)).

activateExistingProducerPosition(

750 amountToConsumer,

751 packer.quantityPackets * packer.producerOrder.depositedShares,

752 msg.sender,

753 DEV_ADDRESS,

754 packer.pool.vault,

755 packer.adapter

756);

757 emit FeeCollection(packer.poolId, interest);

758
759 } else {

760 IPoolWallet(_getAddressForPool(packer.poolId)).withdraw(amountToConsumer, packer.pool.

asset, msg.sender);

761 }

762 }

763 emit CapitalActivated(packer.poolId, packer.quantityPackets, principalId, packer.

sharesPerPacket);

764 }

Listing 2.6: Resonate.sol

The second problem is in the _enqueue function of the Resonate contract. Specifically, when the

submitted order is to be put into the queue, the _enqueue function is invoked. If the asset left in this order

should be deposited into the underlying adapter vault, the shares per packet will be calculated by first

8

invoking the deposit function of the vault adapter to get the total shares, and then dividing it by the number

of packets. This process also incurs precision loss and further potential financial loss.

852 function _enqueue(

853 bytes32 poolId,

854 bool isProvider,

855 bool shouldFarm,

856 Order memory order,

857 uint amount,

858 address asset,

859 address vaultAdapter

860) private {

861
862 if(shouldFarm) {

863 // Store in pool smart wallet as vault deposit

864 IERC20(asset).safeTransferFrom(msg.sender, address(this), amount);

865
866 // Decision to deposit costs 62,080 gas

867 order.depositedShares = IERC4626(vaultAdapter).deposit(amount, _getAddressForPool(poolId))

/ order.packetsRemaining;

868 } else {

869 // Leaving rateAtDeposit as zero signifies non-farming nature of order

870 // Similarly stores value in pool smart wallet

871
872
873 IERC20(asset).safeTransferFrom(msg.sender, _getAddressForPool(poolId), amount);

874 }

875
876 PoolQueue storage qm = queueMarkers[poolId]; //cold sload

877 // Allow overflow to reuse indices

878 unchecked {

879 if(isProvider) {

880 providerQueue[poolId][qm.providerTail] = order; //cold? sstore

881 emit EnqueueProvider(poolId, msg.sender, qm.providerTail++, shouldFarm, order);

882 } else {

883 consumerQueue[poolId][qm.consumerTail] = order;

884 emit EnqueueConsumer(poolId, msg.sender, qm.consumerTail++, order);

885 }

886 }

887 }

Listing 2.7: Resonate.sol

Impact Precision losses in the share calculating process would leave share dust in the project, which

may result in financial losses for the users.

Suggestion Refactor the calculation logic to prevent precision losses.

2.1.4 Incorrect parameters for amount conversion

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

9

Description In the Resonate contract, the producers offer payment tokens of the pool (i.e., the pool.asset

token) to purchase future interests and the consumers offer vault tokens (i.e., the vaultAsset token)

that are deposited into the underlying protocols. These two token types can be different and there is a

_getAmountPaymentAsset function for converting the amount of one token to that of another one based

on current price. The last two parameters of this function suggests that those two addresses should be

pool.asset and vaultAsset. However, at line 316 of the submitProducer function (Listing 2.3), the ad-

dresses passed in are both vaultAsset.

1083 function _getAmountPaymentAsset(uint amountNativeAsset, uint currentExchangeRate, address

poolAsset, address vaultAsset) private view returns (uint amount) {

1084 //Amount of payout Token to consumer immediately

1085 uint divisor;

1086 uint8 poolDecimals;

1087 uint8 vaultDecimals;

1088 try IERC20Detailed(poolAsset).decimals() returns (uint8 dec) {

1089 poolDecimals = dec;

1090 } catch {

1091 poolDecimals = 18;

1092 }

1093 try IERC20Detailed(vaultAsset).decimals() returns (uint8 dec) {

1094 vaultDecimals = dec;

1095 } catch {

1096 vaultDecimals = 18;

1097 }

1098 if(poolDecimals == vaultDecimals) {

1099 // 1E36 or 1E12

1100 // REALLY unusual edge-case handling

1101 divisor = poolDecimals;

1102 } else {

1103 // 1E24

1104 // 1E18 1E6

1105 divisor = vaultDecimals > poolDecimals ? vaultDecimals : Math.min(poolDecimals -

vaultDecimals, vaultDecimals);

1106 }

1107 //1E6 1E24

1108 amount = amountNativeAsset * currentExchangeRate / (10 ** divisor);

1109 }

Listing 2.8: Resonate.sol

Impact Incorrect parameters may lead to incorrect calculation result, which might cause financial losses.

Suggestion Check the usage of the function parameters.

2.1.5 Unhandled corner case

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The valueRewardTokens function in the MasterChefAdapter contract is used to estimate

the current value of the reward tokens in the adapter. It is done by simulating a swap from the reward

10

token to tokens in the pair, and a liquidity provision using the swapped tokens. To simulate the swap,

the function decides the swap path (tokenRoute) according to whether the rewardToken is lpToken0 or

lpToken1 (token0 or token1 in the underlying pair). However, there’s a corner case which is not properly

handled. Specifically, if the rewardToken is neither lpToken0 nor lpToken1, the tokenRoute will be set to

the default one, which is incorrect and can cause miscalculation of the value of the reward tokens.

86 function valueRewardTokens() public view virtual returns (uint256 lpTokens) {

87 if (IERC20(rewardToken).balanceOf(address(this)) > 1) {

88 uint256 rewardTokenHalf = IERC20(rewardToken).balanceOf(address(this)).div(2);

89 // ("Balance reward token: %s", IERC20(rewardToken).balanceOf(address(this)));

90
91 // ("reward token half: %s", rewardTokenHalf);

92
93 (uint reserveA, uint reserveB,) = IUniswapV2Pair(lpPair).getReserves();

94
95 uint256 reserveTokens = reserveA;

96 address[] memory tokenRoute = rewardTokenToLp0Route;

97
98 if (lpToken0 == rewardToken) {

99 reserveTokens = reserveB;

100 tokenRoute = rewardTokenToLp1Route;

101 }

102
103 uint256 amountTokenOut = IUniswapV2Router02(uniRouter).getAmountsOut(rewardTokenHalf,

tokenRoute)[tokenRoute.length.sub(1)];

104
105 uint256 totalSupply = asset.totalSupply();

106 uint256 _kLast = IUniswapV2Pair(lpPair).kLast();

107 uint256 newSupply;

108
109 if (_kLast != 0) {

110 uint rootK = FixedPointMathLib.sqrt(uint(reserveA).mul(reserveB));

111 uint rootKLast = FixedPointMathLib.sqrt(_kLast);

112
113 if (rootK > rootKLast) {

114 uint numerator = totalSupply.mul(rootK.sub(rootKLast));

115 uint denominator = rootK.mul(5).add(rootKLast);

116 uint liquidity = numerator / denominator;

117 if (liquidity > 0) newSupply = totalSupply.add(liquidity);

118 }

119 }

120 lpTokens = amountTokenOut.mulDivDown(newSupply, reserveTokens);

121 }

122
123 else return lpTokens = 0;

124 }

Listing 2.9: MasterChefAdapter.sol

Impact Unhandled corner case may lead to unexpected behaviours.

Suggestion Make sure the rewardToken is either lpToken0 or lpToken1.

11

2.2 DeFi Security

2.2.1 Mixed usages of pool asset and vault asset

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description There are two kinds of assets in the Resonate contract, i.e., pool asset and vault asset. The

pool asset is used by the producers to pay to the consumers for the interests, while the vault asset is used

by the consumers to deposit to the underlying adapter vault to make interests for the producers. However,

there are two mixed usages of these two assets.

First, in the submitConsumer function, if the consumer order is not fully matched with the producer

orders, the _enqueue function (see Listing 2.7) will deposit the vault assets transferred from the consumer

to the underlying adapter vault. That means the consumer deposits vault assets and gets shares that can

be redeemed to vault assets.

279 if(!hasCounterparty && consumerOrder.packetsRemaining > 0) {

280 // No currently available trade, add this order to consumer queue

281 _enqueue(poolId, false, true, consumerOrder, amount, vaultAsset, adapter);

282 }

Listing 2.10: Resonate.sol

However, there is a function for users to modify or cancel their orders. At line 429, for the consumer

orders that have been pushed into the queue (with a depositedShares that is larger than 0) when the pool

asset is not the same as the vault asset, this function can withdraw pool assets to the consumer (line 441).

Therefore, the consumer actually “swapped” the vault assets to the pool assets at a 1:1 ratio.

387 function modifyExistingOrder(bytes32 poolId, uint112 amount, uint64 position, bool isProvider)

external nonReentrant {

388 // This function can withdraw tokens from an existing queued order and remove that order

entirely if needed

389 // amount = number of packets for order

390 // if amount == packets remaining then just go and null out the rest of the order

391 // delete sets the owner address to zero which is an edge case handled elsewhere

392
393 Order memory order = isProvider ? providerQueue[poolId][position] : consumerQueue[poolId][

position];

394 require(msg.sender == order.owner.toAddress(), "ER007");

395
396 //State changes

397 if (order.packetsRemaining == amount) {

398 PoolQueue storage qm = queueMarkers[poolId];

399 emit OrderWithdrawal(poolId, amount, true, msg.sender);

400
401 if (isProvider) {

402 if (position == qm.providerHead) {

403 qm.providerHead++;

404 }

405 else if (position == qm.providerTail) {

12

406 qm.providerTail--;

407 }

408 delete providerQueue[poolId][position];

409 } else {

410 if (position == qm.consumerHead) {

411 qm.consumerHead++;

412 } else if (position == qm.consumerTail) {

413 qm.consumerTail--;

414 }

415 delete consumerQueue[poolId][position];

416 }

417 } else {

418 if (isProvider) {

419 providerQueue[poolId][position].packetsRemaining -= amount;

420 } else {

421 consumerQueue[poolId][position].packetsRemaining -= amount;

422 }

423 emit OrderWithdrawal(poolId, amount, false, msg.sender);

424 }

425
426 PoolConfig memory pool = pools[poolId];

427 uint amountTokens = isProvider ? amount * pool.packetSize * pool.rate / PRECISION : amount

* pool.packetSize;

428 //Token Transfers

429 if (order.depositedShares > 0 && IERC4626(vaultAdapters[pool.vault]).asset() == pool.asset)

{ // > 0 signifies it was farming

430 address asset = IERC4626(vaultAdapters[pool.vault]).asset();

431 uint tokensReceived = _getWalletForPool(poolId).withdrawFromVault(order.depositedShares

* amount, address(this), vaultAdapters[pool.vault]);

432 uint fee;

433 if(tokensReceived > amountTokens) {

434 fee = tokensReceived - amountTokens;

435 IERC20(asset).safeTransfer(DEV_ADDRESS, fee);

436 }

437 IERC20(asset).safeTransfer(msg.sender, tokensReceived - fee);

438
439 } else {

440 // Withdraw from non-farming pool

441 _getWalletForPool(poolId).withdraw(amountTokens, pool.asset, msg.sender);

442 }

443 }

Listing 2.11: Resonate.sol

Second, the claimInterest and batchClaimInterest functions are designed for the producers to

claim the interests they’ve purchased in cash. Since the consumer assets are deposited to the under-

lying adapter vault, the interests should also be returned in vault assets. However, at line 540 of the

claimInterest function and line 506 of the batchClaimInterest function, the interests are actually trans-

ferred to the producer in pool assets, which is another mixed usage of the two assets.

517 function claimInterest(uint fnftId, address recipient) public override nonReentrant {

518 require(msg.sender == PROXY_OUTPUT_RECEIVER || FNFT_HANDLER.getBalance(msg.sender, fnftId) >

0, ’ER010’);

13

519 Active memory active = activated[fnftIdToIndex[fnftId]];

520 require(fnftId == active.principalId + 1, ’ER009’);

521 uint prinPackets = FNFT_HANDLER.getSupply(active.principalId);

522 require(prinPackets > 0, ’ER016’);

523 PoolConfig memory pool = pools[active.poolId];

524 // Withdraw to this contract

525 // NB: Potential violation of checks-effects-interaction. Likely acceptable within context of

ERC-20 transfer to this vault

526 // NB: This is the kind of question to pose to the auditors

527 (uint interest, uint claimPerPacket) = _getWalletForFNFT(active.poolId).

calculateAndClaimInterest(pool.vault, vaultAdapters[pool.vault], address(this),

prinPackets * pool.packetSize, active.sharesPerPacket * prinPackets);

528 claimPerPacket /= prinPackets;

529 if(claimPerPacket <= active.sharesPerPacket) {

530 activated[fnftIdToIndex[fnftId]].sharesPerPacket -= claimPerPacket;

531 } else {

532 activated[fnftIdToIndex[fnftId]].sharesPerPacket = 0;

533 }

534
535
536 // Claim fee on interest

537 uint fee = interest * FEE / DENOM; // round the feed

538 IERC20(pool.asset).transfer(DEV_ADDRESS, fee);

539 // Forward to recipient

540 IERC20(pool.asset).transfer(recipient, interest-fee);

541
542 emit FeeCollection(active.poolId, fee);

543 // TODO: Why are we formatting this event this way?

544 emit InterestClaimed(active.poolId, fnftId, recipient, interest);

545 }

Listing 2.12: Resonate.sol

451 function batchClaimInterest(uint[][] calldata fnftIds, address recipient) external {

452 // Outer array is an array of all FNFTs segregated by pool

453 // Inner array is array of FNFTs to claim interest on

454 uint numberPools = fnftIds.length;

455 require(numberPools > 0, ’ER003’);

456
457 // for each pool

458 for(uint i; i < numberPools; ++i) {

459 // save the list of ids for the pool

460 uint[] calldata fnftsByPool = fnftIds[i];

461 require(fnftsByPool.length > 0, ’ER003’);

462
463 // get the first order, we commit one SLOAD here

464 bytes32 poolId = activated[fnftIdToIndex[fnftsByPool[0]]].poolId;

465 PoolConfig memory pool = pools[poolId];

466 IERC4626 vault = IERC4626(vaultAdapters[pool.vault]);

467 uint shareNormalization = vault.totalSupply() * PRECISION / vault.totalAssets(); // shares

per asset

468 // set up global to track total shares

469 uint totalSharesToRedeem;

14

470 // Precision loss from this is negligible

471 // for each id, should be for loop

472 for(uint j; j < fnftsByPool.length; ++j) {

473 {

474 Active memory active = activated[fnftIdToIndex[fnftsByPool[j]]];

475 require(active.poolId == poolId, ’ER026’);

476 // save the individual id

477 uint fnftId = fnftsByPool[j];

478 require(msg.sender == PROXY_OUTPUT_RECEIVER || FNFT_HANDLER.getBalance(msg.sender,

fnftId) > 0, ’ER010’);

479 require(fnftId == active.principalId + 1, ’ER009’);

480 // 1

481 uint prinPackets = FNFT_HANDLER.getSupply(active.principalId);

482 require(prinPackets > 0, ’ER016’);

483 {

484 // 1000e6 = 1000e6 * 1

485 uint amountUnderlying = pool.packetSize * prinPackets;

486 // huh?

487 uint totalSharesUnderlying = shareNormalization * amountUnderlying / PRECISION;

488 // huh?

489 uint sharesRedeemed = active.sharesPerPacket * prinPackets -

totalSharesUnderlying;

490 // add to cumulative total

491 totalSharesToRedeem += sharesRedeemed;

492 // huh? presumably this is to save off the value

493 sharesRedeemed /= prinPackets;

494 if(sharesRedeemed <= active.sharesPerPacket) {

495 activated[fnftIdToIndex[fnftId]].sharesPerPacket -= sharesRedeemed;

496 } else {

497 activated[fnftIdToIndex[fnftId]].sharesPerPacket = 0;

498 }

499 }

500 }

501 }

502 uint interest = _getWalletForFNFT(poolId).redeemShares(pool.vault, vaultAdapters[pool.vault

], address(this), totalSharesToRedeem);

503 uint fee = interest * FEE / DENOM;

504 IERC20(pool.asset).transfer(DEV_ADDRESS, fee);

505 // Forward to recipient

506 IERC20(pool.asset).transfer(recipient, interest-fee);

507 emit FeeCollection(poolId, fee);

508 }

509 }

Listing 2.13: Resonate.sol

Impact Mixed usages of pool asset and vault asset would lead to logical errors and cause financial losses

to the users.

Suggestion Refactor the misusages.

15

2.2.2 Infinite claims of interest

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the claimInterest function of the Resonate contract (see Listing 2.12), the claimPerPacket

returned by the calculateAndClaimInterest function is divided by the number of packets (i.e., prinPackets).

If the number of packets is very large, claimPerPacket can be zero due to the precision loss, but the

interest (which can be non-zero) has been transferred to the claimer. In such a case, the interest FNFT

holder can infinitely claim the interests because the sharesPerPacket would not decrease because of the

precision loss.

Impact Infinite claims can happen due to the precision loss.

Suggestion Revise the code accordingly.

2.2.3 Arbitrary transfer via proxyCall

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The FNFT smart wallet (i.e., the ResonateSmartWallet contract) has a generic proxyCall

interface that can do arbitrary calls by a special sandwich bot account. There is a check by design to ensure

that the specific token balance is not decreased after the calls. However, the token address is specified in

the parameter (i.e., targets), hence the check could easily be bypassed by providing an irrelevant token.

As there are multiple types of tokens stored in the FNFT smart wallet, current checks are insufficient to

ensure that these funds would not be transferred out. Besides, this function is only callable by a privileged

account, which inevitably leads to a centrality problem.

115 function proxyCall(address vault, address[] memory targets, uint256[] memory values, bytes[]

memory calldatas) external override onlyMaster nonReentrant {

116 uint preBalVaultToken = IERC20(vault).balanceOf(address(this));

117
118 for (uint256 i = 0; i < targets.length; i++) {

119 (bool success,) = targets[i].call{value: values[i]}(calldatas[i]);

120 require(success, "ER022");

121 }

122
123 require(IERC20(vault).balanceOf(address(this)) >= preBalVaultToken, "ER019");

124 }

Listing 2.14: SmartWallet.sol

Impact The privileged account has the ability to transfer all funds out.

Suggestion Add sanity checks to verify the parameter.

16

2.2.4 Price manipulation attack

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The valueRewardTokens function of the MasterChefAdapter contract suffers from price ma-

nipulation attacks. This function simulates the process of adding liquidity to the token pair to calculate the

number of LP tokens for the current reward tokens in the adapter. However, this process has a vulnerable

step that can be exploited by the attacker. Specifically, at line 103, the getAmountsOut function is invoked to

swap from the reward token to either lpToken0 or lpToken1 (i.e., token0 or token1 in the underlying pair).

By manipulating the price, the variable named amountTokenOut can be enlarged and eventually affects the

number of lpTokens being calculated.

86 function valueRewardTokens() public view virtual returns (uint256 lpTokens) {

87 if (IERC20(rewardToken).balanceOf(address(this)) > 1) {

88 uint256 rewardTokenHalf = IERC20(rewardToken).balanceOf(address(this)).div(2);

89 // ("Balance reward token: %s", IERC20(rewardToken).balanceOf(address(this)));

90
91 // ("reward token half: %s", rewardTokenHalf);

92
93 (uint reserveA, uint reserveB,) = IUniswapV2Pair(lpPair).getReserves();

94
95 uint256 reserveTokens = reserveA;

96 address[] memory tokenRoute = rewardTokenToLp0Route;

97
98 if (lpToken0 == rewardToken) {

99 reserveTokens = reserveB;

100 tokenRoute = rewardTokenToLp1Route;

101 }

102
103 uint256 amountTokenOut = IUniswapV2Router02(uniRouter).getAmountsOut(rewardTokenHalf,

tokenRoute)[tokenRoute.length.sub(1)];

104
105 uint256 totalSupply = asset.totalSupply();

106 uint256 _kLast = IUniswapV2Pair(lpPair).kLast();

107 uint256 newSupply;

108
109 if (_kLast != 0) {

110 uint rootK = FixedPointMathLib.sqrt(uint(reserveA).mul(reserveB));

111 uint rootKLast = FixedPointMathLib.sqrt(_kLast);

112
113 if (rootK > rootKLast) {

114 uint numerator = totalSupply.mul(rootK.sub(rootKLast));

115 uint denominator = rootK.mul(5).add(rootKLast);

116 uint liquidity = numerator / denominator;

117 if (liquidity > 0) newSupply = totalSupply.add(liquidity);

118 }

119 }

120 lpTokens = amountTokenOut.mulDivDown(newSupply, reserveTokens);

121 }

122

17

123 else return lpTokens = 0;

124}

Listing 2.15: MasterChefAdapter.sol

Note that MasterChefAdapter is an ERC-4626 vault. When depositing to the vault, the corresponding

shares are calculated through the convertToShares function. The convertToShares function invokes the

totalAssets function which eventually invokes the vulnerable valueRewardTokens function. As a result,

if the attacker successfully manipulates the return value of the totalAssets function, the shares he gets

back would be much larger than they should be.

125 function convertToShares(uint256 assets) public view returns (uint256) {

126 uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

127
128 return supply == 0 ? assets : assets.mulDivDown(supply, totalAssets());

129 }

Listing 2.16: ERC4626.sol

132 function totalAssets() public view virtual override returns (uint256) {

133 (uint256 amount,) = IMasterChef(masterChef).userInfo(poolId, address(this));

134 return amount + valueRewardTokens();

135 }

Listing 2.17: MasterChefAdapter.sol

Besides, another adapter for MasterChefV2 (i.e., the MasterChefV2Adapter contract) has the same

problem.

Impact May lead to price manipulation attacks.

Suggestion Revise the code accordingly.

2.3 NFT Security

2.3.1 Potential DoS attack

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description In the procedure of matching orders, new FNFTs (which are ERC-1155 NFTs) are minted

to order owners of both sides in the _createFNFTs function. According to the ERC-1155 specification,

if the NFT token receivers are contracts, the onERC1155Received callback must be called. Therefore, a

malicious user can submit a producer or consumer order using a contract and make the contract revert

in its onERC1155Received callback function. Once this malicious order is put in the queue, the Resonate

contract cannot function properly again, because the order matching is done in a FIFO manner and all

incoming order matchings would fail in the callback.

775 function _createFNFTs(

776 uint quantityPackets,

777 bytes32 poolId,

18

778 address consumerOwner,

779 address producerOwner

780) private returns (uint principalId) {

781
782 PoolConfig memory pool = pools[poolId];

783
784 // We should know current deposit mul from previous work

785 // Should have already deposited value by this point in workflow

786
787 // Initialize base FNFT config

788 IRevest.FNFTConfig memory fnftConfig;

789 // Common method, both will reference this contract

790 fnftConfig.pipeToContract = PROXY_OUTPUT_RECEIVER;

791 // Further common components

792 address[] memory recipients = new address[](1);

793 uint[] memory quantities = new uint[](1);

794
795 // Begin minting principal FNFTs

796
797 // How many principal FNFTs are we creating?

798 quantities[0] = quantityPackets;

799 // Who should get the principal FNFTs?

800 recipients[0] = consumerOwner;

801
802 if (pool.addInterestRate != 0) {

803 // Mint Type 1

804 principalId = _getRevest().mintAddressLock(PROXY_ADDRESS_LOCK, "", recipients, quantities,

fnftConfig);

805 } else {

806 // Mint Type 0

807 principalId = _getRevest().mintTimeLock(block.timestamp + pool.lockupPeriod, recipients,

quantities, fnftConfig);

808 }

809
810 // Begin minting interest FNFT

811
812 // Interest FNFTs will always be singular

813 // NB: Interest ID will always be +1 of principal ID

814 quantities[0] = 1;

815 recipients[0] = producerOwner;

816 uint interestId;

817
818 if (pool.addInterestRate != 0) {

819 // Mint Type 1

820 interestId = _getRevest().mintAddressLock(PROXY_ADDRESS_LOCK, "", recipients, quantities,

fnftConfig);

821 } else {

822 // Mint Type 0

823 interestId = _getRevest().mintTimeLock(block.timestamp + pool.lockupPeriod, recipients,

quantities, fnftConfig);

824 }

825
826 {

19

827
828 // GAS: Four SSTORE operations // Uses currPricePerShare twice for current and starting

value

829 activated[principalId] = Active(principalId, 1, 0, poolId);

830
831 // GAS: Two SSTORE operations

832 fnftIdToIndex[principalId] = principalId;

833 fnftIdToIndex[interestId] = principalId;

834 }

835
836 emit FNFTCreation(poolId, true, principalId, quantityPackets);

837 emit FNFTCreation(poolId, false, interestId, 1);

838 }

Listing 2.18: Resonate.sol

Impact A malicious order can block the order matching of the whole contract.

Suggestion Verify the owners of the orders.

2.4 Additional Recommendation

2.4.1 Check parameters in constructors and governance functions

Status Fixed in Version 2

Introduced by Version 1

Description In the constructors and governance functions, no check is specified to verify the validity of

some important parameters (e.g., zero addresses or not).

113 constructor(address _router, address _proxyOutputReceiver, address _proxyAddressLock, address

_resonateHelper) {

114 REGISTRY_ADDRESS = _router;

115
116 PROXY_OUTPUT_RECEIVER = _proxyOutputReceiver;

117 PROXY_ADDRESS_LOCK = _proxyAddressLock;

118 RESONATE_HELPER = _resonateHelper;

119 FNFT_HANDLER = IFNFTHandler(IAddressRegistry(_router).getRevestFNFT());

120
121 owner = msg.sender;

122 emit OwnershipTransferred(address(0), msg.sender);

123 }

Listing 2.19: Resonate.sol

Impact N/A

Suggestion Add proper sanity checks.

2.4.2 Move state variable changes out of event logs

Status Fixed in Version 2

Introduced by Version 1

20

Description In the _enqueue and _dequeue function of Resonate contract, there are state variable modifi-

cations in the event emissions. It is a good practice to move the state variable updates out of the emissions.

878 unchecked {

879 if(isProvider) {

880 providerQueue[poolId][qm.providerTail] = order; //cold? sstore

881 emit EnqueueProvider(poolId, msg.sender, qm.providerTail++, shouldFarm, order);

882 } else {

883 consumerQueue[poolId][qm.consumerTail] = order;

884 emit EnqueueConsumer(poolId, msg.sender, qm.consumerTail++, order);

885 }

886 }

Listing 2.20: Resonate.sol

Impact N/A

Suggestion Revise the code accordingly.

2.4.3 Remove unused struct fields

Status Fixed in Version 2

Introduced by Version 1

Description The sharesPerPacket field in the ParamPacker struct for the _activateCapital function of

the Resonate contract is not used.

38 struct ParamPacker {

39 Order consumerOrder;

40 Order producerOrder;

41 bool isProducerNew;

42 bool isCrossAsset;

43 uint quantityPackets;

44 uint sharesPerPacket;

45 uint currentExchangeRate;

46 PoolConfig pool;

47 address adapter;

48 bytes32 poolId;

49 }

Listing 2.21: IResonate.sol

Impact N/A

Suggestion Remove unused struct fields.

2.4.4 Refactor clearing mapping fields into a delete statement

Status Fixed in Version 2

Introduced by Version 1

Description At the end of the receiveRevestOutput function of the Resonate contract, if there is no

packet left for the principal FNFT ID and all interest FNFTs are claimed, the activated mapping field would

be cleared. It is suggested that these statements should be refactored into a single delete statement.

21

654 if(prinPackets == 0 && FNFT_HANDLER.getSupply(active.principalId + 1) == 0) {

655 activated[index].principalId = 0;

656 activated[index].sharesPerPacket = 0;

657 activated[index].startingSharesPerPacket = 0;

658 activated[index].poolId = 0;

659 }

Listing 2.22: Resonate.sol

Impact N/A

Suggestion Refactor the corresponding code.

2.4.5 Remove duplicate calls in the OutputReceiverProxy contract

Status Fixed in Version 2

Introduced by Version 1

Description In the constructor of the OutputReceiverProxy contract, the TOKEN_VAULT address is re-

trieved and set as a state variable. However, in the receiveRevestOutput function, the vault address (i.e.,

the vault variable) is retrieved again.

29 constructor(address _addressRegistry) {

30 addressRegistry = _addressRegistry;

31 TOKEN_VAULT = IAddressRegistry(_addressRegistry).getTokenVault();

32 FNFT_HANDLER = IFNFTHandler(IAddressRegistry(_addressRegistry).getRevestFNFT());

33 }

Listing 2.23: OutputReceiverProxy.sol

35 function receiveRevestOutput(

36 uint fnftId,

37 address asset,

38 address payable owner,

39 uint quantity

40) external override {

41 address vault = IAddressRegistry(addressRegistry).getTokenVault();

42 require(msg.sender == vault, ’ER012’);

43
44 IResonate(resonate).receiveRevestOutput(fnftId, asset, owner, quantity);

45 }

Listing 2.24: OutputReceiverProxy.sol

Impact N/A

Suggestion Remove the duplicate calls and use the state variable.

2.4.6 Check the pool in the MasterChefAdapter contract

Status Acknowledged

Introduced by Version 1

22

Description In the constructor of the MasterChefAdapter contract, the contract should check the validity

of the LP pair and the MasterChef pool ID. This check can be done through the MasterChef interface.

36 constructor(

37 ERC20 _asset,

38 uint256 _poolId,

39 address[] memory _rewardTokenToLp0Route,

40 address[] memory _rewardTokenToLp1Route,

41 address _uniRouter,

42 address _masterChef,

43 address _rewardToken

44) ERC4626(_asset, "MasterChefAdapter", "MFA") { //TODO - Change those things

45
46 //TODO - Ownership locks on contract

47
48 lpPair = address(_asset);

49 poolId = _poolId;

50
51 lpToken0 = IUniswapV2Pair(lpPair).token0();

52 lpToken1 = IUniswapV2Pair(lpPair).token1();

53
54 rewardTokenToLp0Route = _rewardTokenToLp0Route;

55 rewardTokenToLp1Route = _rewardTokenToLp1Route;

56
57 uniRouter = _uniRouter;

58 masterChef = _masterChef;

59
60 rewardToken = _rewardToken;

61 giveAllowances();

62
63 }

Listing 2.25: MasterChefAdapter.sol

Impact N/A

Suggestion Add sanity checks accordingly.

Feedback from the Project This isn’t something we feel is a threat to the system, as proper control

of the LP pair and poolID is entirely delegated to the team. It would be possible to add some checks,

but as failure here would simply result in a broken contract rather than an exploit, we feel the effort isn’t

worthwhile.

2.5 Note

2.5.1 Refunding procedure

Introduced by Version 1

Description In the submitConsumer function of Resonate contract, there is a refunding procedure. If the

pool asset is different from the vault asset and the price between the two assets has changed since the

matching producer order was put in the queue, the function would refund to the DEV_ADDRESS. According

23

to the auditors’ understanding, since the producer packet size would change as the price fluctuates, the

assets retrieved from the producer cannot exactly fulfill the number of packets calculated previously. As a

result, the refunding procedure is to cut off the part that is not divisible by the current producer packet size.

However, the auditors cannot derive the original meanings of the elements used in the calculation,

as there does not exist any detailed illustration (noted by the developers: “the result of setting up a series

of long equations and canceling out their terms”). For example, the amountToRefund is divided by the

packetsRemaining when currentExchange > previousExchange, while the division does not occur on the

opposite. After discussion, the developers confirmed that the code logic is correct because they had

already tested it and would leave it as is.

203 while(hasCounterparty && consumerOrder.packetsRemaining > 0) {

204 // Pull object for counterparty at head of queue

205 Order storage producerOrder = _peek(poolId, true); // Not sure if I can make this memory

because of Reentrancy concerns

206 if(pool.asset != vaultAsset) {

207 uint previousExchange = producerOrder.depositedShares;

208 if(currentExchange != previousExchange) { // This will almost always be true

209 uint maxPacketNumber = producerOrder.packetsRemaining * previousExchange /

currentExchange; // 5

210 uint amountToRefund;

211 if(currentExchange > previousExchange) {

212 // Position is partially or fully insolvent

213 amountToRefund = _getAmountPaymentAsset(

214 (pool.rate * pool.packetSize / PRECISION) * ((producerOrder.packetsRemaining *

currentExchange) -

215 (maxPacketNumber * previousExchange)),

216 1,

217 pool.asset,

218 vaultAsset

219);

220 amountToRefund /= consumerOrder.packetsRemaining;

221
222 } else {

223 // There will be a surplus in the position

224 amountToRefund = _getAmountPaymentAsset(

225 (pool.rate * pool.packetSize / PRECISION) * ((maxPacketNumber * previousExchange

) -

226 (producerOrder.packetsRemaining * currentExchange)),

227 1,

228 pool.asset,

229 vaultAsset

230);

231 }

232
233 if(maxPacketNumber == 0) {

234 // Need to cancel the order because it is totally insolvent

235 // No storage update

236 _dequeue(poolId, true);

237 wallet.withdraw(amountToRefund, pool.asset, producerOrder.owner.toAddress());

238 hasCounterparty = !_isQueueEmpty(poolId, true);

239 continue;

240 }

24

241 // Storage update

242 producerOrder.depositedShares = currentExchange;

243 producerOrder.packetsRemaining = maxPacketNumber;

244
245
246 wallet.withdraw(amountToRefund, pool.asset, DEV_ADDRESS);

247 }

248 }

249 if (producerOrder.owner.toAddress() == address(0)) {

250 // Order has previously been cancelled

251 // Dequeue and move on to next iteration

252 // No storage update

253 _dequeue(poolId, true);

254 } else {

255 uint digestAmt;

256 {

257 uint consumerAmt = consumerOrder.packetsRemaining;

258 uint producerAmt = producerOrder.packetsRemaining;

259 digestAmt = producerAmt >= consumerAmt ? consumerAmt : producerAmt;

260 }

261 _activateCapital(ParamPacker(consumerOrder, producerOrder, false, pool.asset != vaultAsset,

digestAmt, 0, currentExchange, pool, adapter, poolId));

262
263 consumerOrder.packetsRemaining -= digestAmt;

264 producerOrder.packetsRemaining -= digestAmt; // NB: Consider modification not via multiple

storage methods, gas optimziation

265
266 amount -= (digestAmt * pool.packetSize);

267
268 // Handle _dequeue as needed

269 if (producerOrder.packetsRemaining == 0) {

270 _dequeue(poolId, true);

271 }

272 }

273 // Check if queue is empty

274 hasCounterparty = !_isQueueEmpty(poolId, true);

275}

Listing 2.26: Resonate.sol

2.5.2 ID continuity assumption of the interest and principal FNFTs

Introduced by Version 1

Description The token economics of the Resonate project are based on the FNFT of the Revest project.

Once two orders are matched, the Resonate contract would call the contracts of the Revest project for mint-

ing two kinds of FNFT, i.e., interest FNFT and principal FNFT, respectively. In the current implementation

of the Revest contract of the Revest project, the FNFT minting procedure is protected by nonReentrant

guard so that the ID of the interest FNFT is always the ID of the principal FNFTs plus one for each order.

All financial actions are performed based on this assumption.

Although the current logic and dependency seem to be sound, there does not exist actual checks

25

in the Resonate contract to ensure the assumption. Considering that the address of Revest contract is

retrieved from a REGISTRY_ADDRESS, there is a possibility that the two FNFTs do not necessarily satisfy the

assumption in the future versions of the projects.

775 function _createFNFTs(

776 uint quantityPackets,

777 bytes32 poolId,

778 address consumerOwner,

779 address producerOwner

780) private returns (uint principalId) {

781
782 PoolConfig memory pool = pools[poolId];

783
784 // We should know current deposit mul from previous work

785 // Should have already deposited value by this point in workflow

786
787 // Initialize base FNFT config

788 IRevest.FNFTConfig memory fnftConfig;

789 // Common method, both will reference this contract

790 fnftConfig.pipeToContract = PROXY_OUTPUT_RECEIVER;

791 // Further common components

792 address[] memory recipients = new address[](1);

793 uint[] memory quantities = new uint[](1);

794
795 // Begin minting principal FNFTs

796
797 // How many principal FNFTs are we creating?

798 quantities[0] = quantityPackets;

799 // Who should get the principal FNFTs?

800 recipients[0] = consumerOwner;

801
802 if (pool.addInterestRate != 0) {

803 // Mint Type 1

804 principalId = _getRevest().mintAddressLock(PROXY_ADDRESS_LOCK, "", recipients,

quantities, fnftConfig);

805 } else {

806 // Mint Type 0

807 principalId = _getRevest().mintTimeLock(block.timestamp + pool.lockupPeriod, recipients

, quantities, fnftConfig);

808 }

809
810 // Begin minting interest FNFT

811
812 // Interest FNFTs will always be singular

813 // NB: Interest ID will always be +1 of principal ID

814 quantities[0] = 1;

815 recipients[0] = producerOwner;

816 uint interestId;

817
818 if (pool.addInterestRate != 0) {

819 // Mint Type 1

820 interestId = _getRevest().mintAddressLock(PROXY_ADDRESS_LOCK, "", recipients,

quantities, fnftConfig);

26

821 } else {

822 // Mint Type 0

823 interestId = _getRevest().mintTimeLock(block.timestamp + pool.lockupPeriod, recipients,

quantities, fnftConfig);

824 }

825
826 {

827
828 // GAS: Four SSTORE operations // Uses currPricePerShare twice for current and starting

value

829 activated[principalId] = Active(principalId, 1, 0, poolId);

830
831 // GAS: Two SSTORE operations

832 fnftIdToIndex[principalId] = principalId;

833 fnftIdToIndex[interestId] = principalId;

834 }

835
836 emit FNFTCreation(poolId, true, principalId, quantityPackets);

837 emit FNFTCreation(poolId, false, interestId, 1);

838 }

Listing 2.27: Resonate.sol

1126 function _getRevest() private view returns (IRevest) {

1127 return IRevest(IAddressRegistry(REGISTRY_ADDRESS).getRevest());

1128 }

Listing 2.28: Resonate.sol

2.5.3 Potential vulnerability in the harvest function

Introduced by Version 1

Description In the ERC-4626 adapter for the MasterChef contract (i.e., the MasterChefAdapter contract),

there is a public function called harvest which does not have access control. This function harvests

rewards from the underlying MasterChef contract, swaps in the Uniswap router, and then adds liquidity into

the Uniswap/SushiSwap pair. However, no price slippage check is performed in the swapping process.

Since this function is public that can be invoked by anyone (and any contract), a malicious attacker

can first manipulate the price of the underlying pool, then call the harvest function to swap tokens and

provide liquidity in an unbalanced pool, finally swap back to make a profit. This attack is profitable if there

are enough tokens in the adapter contract.

As stated by the developers, it is not a critical issue for the difficulty of gaining the profit. However, the

producers mainly profit from the underlying interests. When the attack is performed, the producers would

always suffer from losses.

66 function harvest() public {

67 // require(!Address.isContract(msg.sender), "ER029");

68 IMasterChef(masterChef).deposit(poolId, 0);

69 addLiquidity();

70 deposit();

71 }

27

Listing 2.29: MasterChefAdapter.sol

182 function addLiquidity() internal {

183 uint256 rewardTokenHalf = IERC20(rewardToken).balanceOf(address(this)).div(2);

184
185 if (lpToken0 != rewardToken) {

186 IUniswapV2Router02(uniRouter).swapExactTokensForTokensSupportingFeeOnTransferTokens(

rewardTokenHalf, 0, rewardTokenToLp0Route, address(this), block.timestamp.add(100));

187 }

188
189 if (lpToken1 != rewardToken) {

190 IUniswapV2Router02(uniRouter).swapExactTokensForTokensSupportingFeeOnTransferTokens(

rewardTokenHalf, 0, rewardTokenToLp1Route, address(this), block.timestamp.add(600));

191 }

192
193 uint256 lp0Bal = IERC20(lpToken0).balanceOf(address(this));

194 uint256 lp1Bal = IERC20(lpToken1).balanceOf(address(this));

195
196 IUniswapV2Router02(uniRouter).addLiquidity(lpToken0, lpToken1, lp0Bal, lp1Bal, 1, 1, address(

this), block.timestamp.add(600));

197
198 }

Listing 2.30: MasterChefAdapter.sol

Feedback from the Project We’ve spoken with some other security researchers and yield farmers about

the harvest question. We think, essentially, it is a one-transaction sandwich attack against DEX to gain

profit from slippage. However, it should be not a very critical issue. It is very difficult to gain profit, since

it requires the amount of locked reward Token is very huge. Besides, bunch of projects in the wild adopt

this style of harvest. At least, it would not worth a bug bounty. I think it’s something we’ll likely have two

versions of our contracts for and work with protocols on a case-by-case basis to figure out what’s right for

them.

28

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Inconsistent rounding check
	2.1.2 Immutable variable derives from mutable state
	2.1.3 Precision losses
	2.1.4 Incorrect parameters for amount conversion
	2.1.5 Unhandled corner case

	2.2 DeFi Security
	2.2.1 Mixed usages of pool asset and vault asset
	2.2.2 Infinite claims of interest
	2.2.3 Arbitrary transfer via structurecolorproxyCall
	2.2.4 Price manipulation attack

	2.3 NFT Security
	2.3.1 Potential DoS attack

	2.4 Additional Recommendation
	2.4.1 Check parameters in constructors and governance functions
	2.4.2 Move state variable changes out of event logs
	2.4.3 Remove unused struct fields
	2.4.4 Refactor clearing mapping fields into a structurecolordelete statement
	2.4.5 Remove duplicate calls in the structurecolorOutputReceiverProxy contract
	2.4.6 Check the pool in the structurecolorMasterChefAdapter contract

	2.5 Note
	2.5.1 Refunding procedure
	2.5.2 ID continuity assumption of the interest and principal FNFTs
	2.5.3 Potential vulnerability in the structurecolorharvest function

		2022-08-18T13:51:28+0800
	BlockSec Audit Team

